
Contents

1: Preparing Your Data Science Environment
b'Chapter 1: Preparing Your Data Science Environment'
b'Understanding the data science pipeline'
b'Installing R on Windows, Mac OS X, and Linux'
b'Installing libraries in R and RStudio'
b'Installing Python on Linux and Mac OS X'
b'Installing Python on Windows'
b'Installing the Python data stack on Mac OS X and Linux'
b'Installing extra Python packages'
b'Installing and using virtualenv'

2: Driving Visual Analysis with Automobile Data with R
b'Chapter 2: Driving Visual Analysis with Automobile Data with R'
b'Introduction'
b'Acquiring automobile fuel efficiency data'
b'Preparing R for your first project'
b'Importing automobile fuel efficiency data into R'
b'Exploring and describing fuel efficiency data'
b'Analyzing automobile fuel efficiency over time'
b'Investigating the makes and models of automobiles'

3: Creating Application-Oriented Analyses Using Tax Data and Python
b'Chapter 3: Creating Application-Oriented Analyses Using Tax
Data and Python'
b'Introduction'
b'Preparing for the analysis of top incomes'
b'Importing and exploring the world's top incomes dataset'
b'Analyzing and visualizing the top income data of the US'
b'Furthering the analysis of the top income groups of the US'
b'Reporting with Jinja2'
b'Repeating the analysis in R'

4: Modeling Stock Market Data
b'Chapter 4: Modeling Stock Market Data'
b'Introduction'
b'Acquiring stock market data'
b'Summarizing the data'
b'Cleaning and exploring the data'
b'Generating relative valuations'
b'Screening stocks and analyzing historical prices'

5: Visually Exploring Employment Data
b'Chapter 5: Visually Exploring Employment Data'
b'Introduction'
b'Preparing for analysis'
b'Importing employment data into R'
b'Exploring the employment data'
b'Obtaining and merging additional data'
b'Adding geographical information'
b'Extracting state- and county-level wage and employment
information'
b'Visualizing geographical distributions of pay'
b'Exploring where the jobs are, by industry'
b'Animating maps for a geospatial time series'
b'Benchmarking performance for some common tasks'

6: Driving Visual Analyses with Automobile Data
b'Chapter 6: Driving Visual Analyses with Automobile Data'
b'Introduction'
b'Getting started with IPython'
b'Exploring Jupyter Notebook'
b'Preparing to analyze automobile fuel efficiencies'
b'Exploring and describing fuel efficiency data with Python'
b'Analyzing automobile fuel efficiency over time with Python'
b'Investigating the makes and models of automobiles with Python'

7: Working with Social Graphs
b'Chapter 7: Working with Social Graphs'
b'Introduction'
b'Preparing to work with social networks in Python'
b'Importing networks'
b'Exploring subgraphs within a heroic network'
b'Finding strong ties'
b'Finding key players'
b'Exploring the characteristics of entire networks'
b'Clustering and community detection in social networks'
b'Visualizing graphs'
b'Social networks in R'

8: Recommending Movies at Scale (Python)
b'Chapter 8: Recommending Movies at Scale (Python)'

b'Introduction'
b'Modeling preference expressions'
b'Understanding the data'
b'Ingesting the movie review data'
b'Finding the highest-scoring movies'
b'Improving the movie-rating system'
b'Measuring the distance between users in the preference space'
b'Computing the correlation between users'
b'Finding the best critic for a user'
b'Predicting movie ratings for users'
b'Collaboratively filtering item by item'
b'Building a non-negative matrix factorization model'
b'Loading the entire dataset into the memory'
b'Dumping the SVD-based model to the disk'
b'Training the SVD-based model'
b'Testing the SVD-based model'

9: Harvesting and Geolocating Twitter Data (Python)
b'Chapter 9: Harvesting and Geolocating Twitter Data (Python)'
b'Introduction'
b'Creating a Twitter application'
b'Understanding the Twitter API v1.1'
b'Determining your Twitter followers and friends'
b'Pulling Twitter user profiles'
b'Making requests without running afoul of Twitter's rate limits'
b'Storing JSON data to disk'
b'Setting up MongoDB for storing Twitter data'
b'Storing user profiles in MongoDB using PyMongo'
b'Exploring the geographic information available in profiles'
b'Plotting geospatial data in Python'

10: Forecasting New Zealand Overseas Visitors
b'Chapter 10: Forecasting New Zealand Overseas Visitors'
b'Introduction'
b'The ts object'
b'Visualizing time series data'
b'Simple linear regression models'
b'ACF and PACF'
b'ARIMA models'

b'Accuracy measurements'
b'Fitting seasonal ARIMA models'

11: German Credit Data Analysis
b'Chapter 11: German Credit Data Analysis'
b'Introduction'
b'Simple data transformations'
b'Visualizing categorical data'
b'Discriminant analysis'
b'Dividing the data and the ROC'
b'Fitting the logistic regression model'
b'Decision trees and rules'
b'Decision tree for german data'

Chapter 1. Preparing Your Data Science
Environment
A traditional cookbook contains culinary recipes of interest to the authors,
and helps readers expand their repertoire of foods to prepare. Many might
believe that the end product of a recipe is the dish itself and one can read this
book, in much the same way. Every chapter guides the reader through the
application of the stages of the data science pipeline to different datasets with
various goals. Also, just as in cooking, the final product can simply be the
analysis applied to a particular set.

We hope that you will take a broader view, however. Data scientists learn by
doing, ensuring that every iteration and hypothesis improves the practioner's
knowledge base. By taking multiple datasets through the data science
pipeline using two different programming languages (R and Python), we
hope that you will start to abstract out the analysis patterns, see the bigger
picture, and achieve a deeper understanding of this rather ambiguous field of
data science.

We also want you to know that, unlike culinary recipes, data science recipes
are ambiguous. When chefs begin a particular dish, they have a very clear
picture in mind of what the finished product will look like. For data scientists,
the situation is often different. One does not always know what the dataset in
question will look like, and what might or might not be possible, given the
amount of time and resources. Recipes are essentially a way to dig into the
data and get started on the path towards asking the right questions to
complete the best dish possible.

If you are from a statistical or mathematical background, the modeling
techniques on display might not excite you per se. Pay attention to how many
of the recipes overcome practical issues in the data science pipeline, such as
loading large datasets and working with scalable tools to adapting known
techniques to create data applications, interactive graphics, and web pages
rather than reports and papers. We hope that these aspects will enhance your
appreciation and understanding of data science and apply good data science

to your domain.

Practicing data scientists require a great number and diversity of tools to get
the job done. Data practitioners scrape, clean, visualize, model, and perform a
million different tasks with a wide array of tools. If you ask most people
working with data, you will learn that the foremost component in this toolset
is the language used to perform the analysis and modeling of the data.
Identifying the best programming language for a particular task is akin to
asking which world religion is correct, just with slightly less bloodshed.

In this book, we split our attention between two highly regarded, yet very
different, languages used for data analysis - R and Python and leave it up to
you to make your own decision as to which language you prefer. We will
help you by dropping hints along the way as to the suitability of each
language for various tasks, and we'll compare and contrast similar analyses
done on the same dataset with each language.

When you learn new concepts and techniques, there is always the question of
depth versus breadth. Given a fixed amount of time and effort, should you
work towards achieving moderate proficiency in both R and Python, or
should you go all in on a single language? From our professional experiences,
we strongly recommend that you aim to master one language and have
awareness of the other. Does that mean skipping chapters on a particular
language? Absolutely not! However, as you go through this book, pick one
language and dig deeper, looking not only to develop conversational ability,
but also fluency.

To prepare for this chapter, ensure that you have sufficient bandwidth to
download up to several gigabytes of software in a reasonable amount of time.

Understanding the data science pipeline

Before we start installing any software, we need to understand the repeatable
set of steps that we will use for data analysis throughout the book.

How to do it...

The following are the five key steps for data analysis:

1. Acquisition: The first step in the pipeline is to acquire the data from a
variety of sources, including relational databases, NoSQL and document
stores, web scraping, and distributed databases such as HDFS on a
Hadoop platform, RESTful APIs, flat files, and hopefully this is not the
case, PDFs.

2. Exploration and understanding: The second step is to come to an
understanding of the data that you will use and how it was collected; this
often requires significant exploration.

3. Munging, wrangling, and manipulation: This step is often the single
most time-consuming and important step in the pipeline. Data is almost
never in the needed form for the desired analysis.

4. Analysis and modeling: This is the fun part where the data scientist
gets to explore the statistical relationships between the variables in the
data and pulls out his or her bag of machine learning tricks to cluster,
categorize, or classify the data and create predictive models to see into
the future.

5. Communicating and operationalizing: At the end of the pipeline, we
need to give the data back in a compelling form and structure,
sometimes to ourselves to inform the next iteration, and sometimes to a
completely different audience. The data products produced can be a
simple one-off report or a scalable web product that will be used
interactively by millions.

How it works...

Although the preceding list is a numbered list, don't assume that every project
will strictly adhere to this exact linear sequence. In fact, agile data scientists
know that this process is highly iterative. Often, data exploration informs
how the data must be cleaned, which then enables more exploration and
deeper understanding. Which of these steps comes first often depends on
your initial familiarity with the data. If you work with the systems producing
and capturing the data every day, the initial data exploration and
understanding stage might be quite short, unless something is wrong with the
production system. Conversely, if you are handed a dataset with no
background details, the data exploration and understanding stage might
require quite some time (and numerous non-programming steps, such as
talking with the system developers).

The following diagram shows the data science pipeline:

As you have probably heard or read by now, data munging or wrangling can

often consume 80 percent or more of project time and resources. In a perfect
world, we would always be given perfect data. Unfortunately, this is never
the case, and the number of data problems that you will see is virtually
infinite. Sometimes, a data dictionary might change or might be missing, so
understanding the field values is simply not possible. Some data fields may
contain garbage or values that have been switched with another field. An
update to the web app that passed testing might cause a little bug that
prevents data from being collected, causing a few hundred thousand rows to
go missing. If it can go wrong, it probably did at some point; the data you
analyze is the sum total of all of these mistakes.

The last step, communication and operationalization, is absolutely critical,
but with intricacies that are not often fully appreciated. Note that the last step
in the pipeline is not entitled data visualization and does not revolve around
simply creating something pretty and/or compelling, which is a complex
topic in itself. Instead, data visualizations will become a piece of a larger
story that we will weave together from and with data. Some go even further
and say that the end result is always an argument as there is no point in
undertaking all of this effort unless you are trying to persuade someone or
some group of a particular point.

Installing R on Windows, Mac OS X, and
Linux

Straight from the R project, R is a language and environment for statistical
computing and graphics, and it has emerged as one of the de-facto languages
for statistical and data analysis. For us, it will be the default tool that we use
in the first half of the book.

Getting ready Make sure you have a good broadband connection to the
Internet as you may have to download up to 200 MB of software.

How to do it...

Installing R is easy; use the following steps:

1. Go to Comprehensive R Archive Network (CRAN) and download the
latest release of R for your particular operating system:

For Windows, go to http://cran.r-project.org/bin/windows/base/
For Linux, go to http://cran.us.r-project.org/bin/linux/
For Mac OS X, go to http://cran.us.r-project.org/bin/macosx/

As of June 2017, the latest release of R is Version 3.4.0 from April 2017.

2. Once downloaded, follow the excellent instructions provided by CRAN
to install the software on your respective platform. For both Windows
and Mac, just double-click on the downloaded install packages.

3. With R installed, go ahead and launch it. You should see a window
similar to that shown in the following screenshot:

http://cran.r-project.org/bin/windows/base/
http://cran.us.r-project.org/bin/linux/
http://cran.us.r-project.org/bin/macosx/

4. An important modification of CRAN is available at
https://mran.microsoft.com/ and it is a Microsoft contribution to R
software. In fact, the authors are a fan of this variant and strongly
recommend the Microsoft version as it has been demonstrated on
multiple occasions that MRAN version is much faster than the CRAN
version and all codes run the same on both the variants. So, there is a
bonus reason to use MRAN R versions.

5. You can stop at just downloading R, but you will miss out on the
excellent Integrated Development Environment (IDE) built for R,
called RStudio. Visit http://www.rstudio.com/ide/download/ to
download RStudio, and follow the online installation instructions.

https://mran.microsoft.com/
http://www.rstudio.com/ide/download/

6. Once installed, go ahead and run RStudio. The following screenshot
shows one of our author's customized RStudio configurations with the
Console panel in the upper-left corner, the editor in the upper-right
corner, the current variable list in the lower-left corner, and the current
directory in the lower-right corner:

How it works...

R is an interpreted language that appeared in 1993 and is an implementation
of the S statistical programming language that emerged from Bell Labs in the
'70s (S-PLUS is a commercial implementation of S). R, sometimes referred to
as GNU S due to its open source license, is a domain-specific language
(DSL) focused on statistical analysis and visualization. While you can do

many things with R, not seemingly related directly to statistical analysis
(including web scraping), it is still a domain-specific language and not
intended for general-purpose usage.

R is also supported by CRAN, the Comprehensive R Archive Network
(http://cran.r-project.org/). CRAN contains an accessible archive of previous
versions of R, allowing for analyses depending on older versions of the
software to be reproduced. Further, CRAN contains hundreds of freely
downloaded software packages, greatly extending the capability of R. In fact,
R has become the default development platform for multiple academic fields,
including statistics, resulting in the latest and greatest statistical algorithms
being implemented first in R. The faster R versions are available in the
Microsoft variants at https://mran.microsoft.com/.

RStudio (http://www.rstudio.com/) is available under the GNU Affero
General Public License v3 and is open source and free to use. RStudio, Inc.,
the company, offers additional tools and services for R as well as commercial
support.

See also

You can also refer to the following:

Refer to the Getting Started with Rarticle at
https://support.rstudio.com/hc/en-us/articles/201141096-Getting-
Started-with-R
Visit the home page for RStudio at http://www.rstudio.com/
Refer to the Stages in the Evolution of S article at http://cm.bell-
labs.com/cm/ms/departments/sia/S/history.html
Refer to the A Brief History of S PS file at http://cm.bell-
labs.com/stat/doc/94.11.ps

http://cran.r-project.org/
https://mran.microsoft.com/
http://www.rstudio.com/
https://support.rstudio.com/hc/en-us/articles/201141096-Getting-Started-with-R
http://www.rstudio.com/
http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html
http://cm.bell-labs.com/stat/doc/94.11.ps

Installing libraries in R and RStudio

R has an incredible number of libraries that add to its capabilities. In fact, R
has become the default language for many college and university statistics
departments across the country. Thus, R is often the language that will get the
first implementation of newly developed statistical algorithms and
techniques. Luckily, installing additional libraries is easy, as you will see in
the following sections.

Getting ready

As long as you have R or RStudio installed, you should be ready to go.

How to do it...

R makes installing additional packages simple:

1. Launch the R interactive environment or, preferably, RStudio.
2. Let's install ggplot2. Type the following command, and then press the

Enter key:

install.packages("ggplot2")

Note

Note that for the remainder of the book, it is assumed that, when
we specify entering a line of text, it is implicitly followed by
hitting the Return or Enter key on the keyboard

3. You should now see text similar to the following as you scroll down the
screen:

trying URL 'http://cran.rstudio.com/bin/macosx/contrib/3.0/

 ggplot2_0.9.3.1.tgz'Content type 'application/x-gzip' length 2650041 bytes (2.5
 Mb)
opened URL
==
downloaded 2.5 Mb

The downloaded binary packages are in
/var/folders/db/z54jmrxn4y9bjtv8zn_1zlb00000gn/T//Rtmpw0N1dA/
 downloaded_packages

4. You might have noticed that you need to know the exact name, in this
case, ggplot2, of the package you wish to install. Visit http://cran.us.r-
project.org/web/packages/available_packages_by_name.html to make
sure you have the correct name.

5. RStudio provides a simpler mechanism to install packages. Open up
RStudio if you haven't already done so.

6. Go to Tools in the menu bar and select Install Packages A new
window will pop up, as shown in the following screenshot:

http://cran.us.r-project.org/web/packages/available_packages_by_name.html

7. As soon as you start typing in the Packages field, RStudio will show
you a list of possible packages. The autocomplete feature of this field
simplifies the installation of libraries. Better yet, if there is a similarly
named library that is related, or an earlier or newer version of the library
with the same first few letters of the name, you will see it.

8. Let's install a few more packages that we highly recommend. At the R
prompt, type the following commands:

install.packages("lubridate")
install.packages("plyr")
install.packages("reshape2")

You can download the example code files for all Packt books you have
purchased from your account athttp://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files E-mailed directly to you.

How it works...

Whether you use RStudio's graphical interface or the install.packages
command, you do the same thing. You tell R to search for the appropriate

http://www.PacktPub.com/support
http://www.PacktPub.com/support
http://www.packtpub.com/support

library built for your particular version of R. When you issue the command,
R reports back the URL of the location where it has found a match for the
library in CRAN and the location of the binary packages after download.

There's more...

R's community is one of its strengths, and we would be remiss if we didn't
briefly mention two things. R-bloggers is a website that aggregates R-related
news and tutorials from over 750 different blogs. If you have a few questions
on R, this is a great place to look for more information. The Stack Overflow
site (http://www.stackoverflow.com) is a great place to ask questions and find
answers on R using the tag rstats.

Finally, as your prowess with R grows, you might consider building an R
package that others can use. Giving an in-depth tutorial on the library
building process is beyond the scope of this book, but keep in mind that
community submissions form the heart of the R movement.

See also

You can also refer to the following:

Refer to the 10 R packages I wish I knew about earlier article at
http://blog.yhathq.com/posts/10-R-packages-I-wish-I-knew-about-
earlier.html
Visit the R-bloggers website at http://www.r-bloggers.com/
Refer to the Creating R Packages: A Tutorial at http://cran.r-
project.org/doc/contrib/Leisch-CreatingPackages.pdf
Refer to the Top 100 R packages for 2013 (Jan-May)! article at
http://www.r-bloggers.com/top-100-r-packages-for-2013-jan-may/
Visit the Learning R blog website at http://learnr.wordpress.com

http://www.stackoverflow.com
http://blog.yhathq.com/posts/10-R-packages-I-wish-I-knew-about-earlier.html
http://www.r-bloggers.com/
http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf%20
http://www.r-bloggers.com/top-100-r-packages-for-2013-jan-may/
http://learnr.wordpress.com

Installing Python on Linux and Mac OS X

Luckily for us, Python comes pre-installed on most versions of Mac OS X
and many flavors of Linux (both the latest versions of Ubuntu and Fedora
come with Python 2.7 or later versions out of the box). Thus, we really don't
have a lot to do for this recipe, except check whether everything is installed.

For this book, we will work with Python 3.4.0.

Getting ready

Just make sure you have a good Internet connection in case we need to install
anything.

How to do it...

Perform the following steps in the command prompt:

1. Open a new Terminal window and type the following command:

which python

2. If you have Python installed, you should see something like this:

/usr/bin/python

3. Next, check which version you are running with the following
command:

python --version

How it works...

If you are planning on using OS X, you might want to set up a separate

Python distribution on your machine for a few reasons. First, each time Apple
upgrades your OS, it can and will obliterate your installed Python packages,
forcing a reinstall of all previously installed packages. Secondly, new
versions of Python will be released more frequently than Apple will update
the Python distribution included with OS X. Thus, if you want to stay on the
bleeding edge of Python releases, it is best to install your own distribution.
Finally, Apple's Python release is slightly different from the official Python
release and is located in a nonstandard location on the hard drive.

There are a number of tutorials available online to help walk you through the
installation and setup of a separate Python distribution on your Mac. We
recommend an excellent guide, available at http://docs.python-
guide.org/en/latest/starting/install/osx/, to install a separate Python
distribution on your Mac.

See also

You can also refer to the following:

Refer to the Python For Beginners guide at
http://www.python.org/about/gettingstarted/
Refer to The Hitchhiker's Guide to Python at http://docs.python-
guide.org/en/latest/
Refer to the Python Development Environment onMac OS X Mavericks
10.9 article at http://hackercodex.com/guide/python-development-
environment-on-mac-osx/

http://docs.python-guide.org/en/latest/starting/install/osx/
http://www.python.org/about/gettingstarted/
http://docs.python-guide.org/en/latest/
http://hackercodex.com/guide/python-development-environment-on-mac-osx/

Installing Python on Windows

Installing Python on Windows systems is complicated, leaving you with three
different options. First, you can choose to use the standard Windows release
with executable installer from Python.org available at
http://www.python.org/download/releases/. The potential problem with this
route is that the directory structure, and therefore, the paths for configuration
and settings will be different from the standard Python installation. As a
result, each Python package that was installed (and there will be many) might
have path problems. Further, most tutorials and answers online won't apply to
a Windows environment, and you will be left to your own devices to figure
out problems. We have witnessed countless tutorial-ending problems for
students who install Python on Windows in this way. Unless you are an
expert, we recommend that you do not choose this option.

The second option is to install a prebundled Python distribution that contains
all scientific, numeric, and data-related packages in a single install. There are
two suitable bundles, one from Enthought and another from Continuum
Analytics. Enthought offers the Canopy distribution of Python 3.5 in both
32- and 64-bit versions for Windows. The free version of the software,
Canopy Express, comes with more than 50 Python packages pre-configured
so that they work straight out of the box, including pandas, NumPy, SciPy,
IPython, and matplotlib, which should be sufficient for the purposes of this
book. Canopy Express also comes with its own IDE reminiscent of
MATLAB or RStudio.

Continuum Analytics offers Anaconda, a completely free (even for
commercial work) distribution of Python 2.7, and 3.6, which contains over
100 Python packages for science, math, engineering, and data analysis.
Anaconda contains NumPy, SciPy, pandas, IPython, matplotlib, and much
more, and it should be more than sufficient for the work that we will do in
this book.

The third, and best option for purists, is to run a virtual Linux machine within

http://www.python.org/download/releases/

Windows using the free VirtualBox
(https://www.virtualbox.org/wiki/Downloads) from Oracle software. This
will allow you to run Python in whatever version of Linux you prefer. The
downside to this approach to that virtual machines tend to run a bit slower
than native software, and you will have to get used to navigating via the
Linux command line, a skill that any practicing data scientist should have.

How to do it...

Perform the following steps to install Python using VirtualBox:

1. If you choose to run Python in a virtual Linux machine, visit
https://www.virtualbox.org/wiki/Downloads to download VirtualBox
from Oracle Software for free.

2. Follow the detailed install instructions for Windows at
https://www.virtualbox.org/manual/ch01.html#intro-installing.

3. Continue with the instructions and walk through the sections entitled
1.6. Starting VirtualBox, 1.7 Creating your first virtual machine, and 1.8
Running your virtual machine.

4. Once your virtual machine is running, head over to the Installing Python
on Linux and Mac OS X recipe.

If you want to install Continuum Analytics' Anaconda distribution locally
instead, follow these steps:

1. If you choose to install Continuum Analytics' Anaconda distribution, go
to http://continuum.io/downloads and select either the 64- or 32-bit
version of the software (the 64-bit version is preferable) under Windows
installers.

2. Follow the detailed installation instructions for Windows at
http://docs.continuum.io/anaconda/install.html.

How it works...

For many readers, choosing between a prepackaged Python distribution and
running a virtual machine might be easy based on their experience. If you are

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch01.html#intro-installing
http://continuum.io/downloads
http://docs.continuum.io/anaconda/install.html

wrestling with this decision, keep reading. If you come from a windows-only
background and/or don't have much experience with a *nix command line,
the virtual machine-based route will be challenging and will force you to
expand your skill set greatly. This takes effort and a significant amount of
tenacity, both useful for data science in general (trust us on this one). If you
have the time and/or knowledge, running everything in a virtual machine will
move you further down the path to becoming a data scientist and, most likely,
make your code easier to deploy in production environments. If not, you can
choose the backup plan and use the Anaconda distribution, as many people
choose to do.

For the remainder of this book, we will always include Linux/Mac OS X-
oriented Python package install instructions first and supplementary
Anaconda install instructions second. Thus, for Windows users we will
assume you have either gone the route of the Linux virtual machine or used
the Anaconda distribution. If you choose to go down another path, we
applaud your sense of adventure and wish you the best of luck! Let Google
be with you.

See also

You can also refer to the following:

Refer to the Anaconda web page at
https://store.continuum.io/cshop/anaconda/
Visit the Enthought Canopy Express web page at
https://www.enthought.com/canopy-express/
Visit the VirtualBox website at https://www.virtualbox.org/
Various installers of Python packages for Windows at
http://www.lfd.uci.edu/~gohlke/pythonlibs

https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/canopy-express/
https://www.virtualbox.org/
http://www.lfd.uci.edu/~gohlke/pythonlibs%20

Installing the Python data stack on Mac OS
X and Linux

While Python is often said to have batteries included, there are a few key
libraries that really take Python's ability to work with data to another level. In
this recipe, we will install what is sometimes called the SciPy stack, which
includes NumPy, SciPy, pandas, matplotlib, and Jupyter.

Getting ready

This recipe assumes that you have a standard Python installed.

Note

If, in the previous section, you decided to install the Anaconda
distribution (or another distribution of Python with the needed
libraries included), you can skip this recipe.

To check whether you have a particular Python package installed, start up
your Python interpreter and try to import the package. If successful, the
package is available on your machine. Also, you will probably need root
access to your machine via the sudo command.

How to do it...

The following steps will allow you to install the Python data stack on Linux:

1. When installing this stack on Linux, you must know which distribution
of Linux you are using. The flavor of Linux usually determines the
package management system that you will be using, and the options
include apt-get, yum, and rpm.

2. Open your browser and navigate to http://www.scipy.org/install.html,

http://www.scipy.org/install.html

which contains detailed instructions for most platforms.
3. These instructions may change and should supersede the instructions

offered here, if different:
1. Open up a shell.
2. If you are using Ubuntu or Debian, type the following:

sudo apt-get install build-essential python-dev python-
 setuptools python-numpy python-scipy python-matplotlib ipython
 ipython-notebook python-pandas python-sympy python-nose

1. 3. If you are using Fedora, type the following:

sudo yum install numpy scipy python-matplotlib ipython python-pandas sympy python-nose

4. You have several options to install the Python data stack on your
Macintosh running OS X. These are:

1. The first option is to download pre-built installers (.dmg) for each
tool, and install them as you would any other Mac application (this
is recommended).

2. The second option is if you have MacPorts, a command line-based
system to install software, available on your system. You will also
probably need XCode with the command-line tools already
installed. If so, you can enter:

sudo port install py27-numpy py27-scipy py27-matplotlib py27- ipython +notebook py27-pandas py27-sympy py27-nose

1. 3. As the third option, Chris Fonnesbeck provides a bundled way to
install the stack on the Mac that is tested and covers all the
packages we will use here. Refer to
http://fonnesbeck.github.io/ScipySuperpack.

All the preceding options will take time as a large number of files will be
installed on your system.

How it works...

Installing the SciPy stack has been challenging historically due to
compilation dependencies, including the need for Fortran. Thus, we don't

http://fonnesbeck.github.io/ScipySuperpack

recommend that you compile and install from source code, unless you feel
comfortable doing such things.

Now, the better question is, what did you just install? We installed the latest
versions of NumPy, SciPy, matplotlib, IPython, IPython Notebook, pandas,
SymPy, and nose. The following are their descriptions:

SciPy: This is a Python-based ecosystem of open source software for
mathematics, science, and engineering and includes a number of useful
libraries for machine learning, scientific computing, and modeling.
NumPy: This is the foundational Python package providing numerical
computation in Python, which is C-like and incredibly fast, particularly
when using multidimensional arrays and linear algebra operations.
NumPy is the reason that Python can do efficient, large-scale numerical
computation that other interpreted or scripting languages cannot do.
matplotlib: This is a well-established and extensive 2D plotting library
for Python that will be familiar to MATLAB users.
IPython: This offers a rich and powerful interactive shell for Python. It
is a replacement for the standard Python Read-Eval-Print Loop
(REPL), among many other tools.
Jupyter Notebook: This offers a browser-based tool to perform and
record work done in Python with support for code, formatted text,
markdown, graphs, images, sounds, movies, and mathematical
expressions.
pandas: This provides a robust data frame object and many additional
tools to make traditional data and statistical analysis fast and easy.
nose: This is a test harness that extends the unit testing framework in the
Python standard library.

There's more...

We will discuss the various packages in greater detail in the chapter in which
they are introduced. However, we would be remiss if we did not at least
mention the Python IDEs. In general, we recommend using your favorite
programming text editor in place of a full-blown Python IDE. This can
include the open source Atom from GitHub, the excellent Sublime Text
editor, or TextMate, a favorite of the Ruby crowd. Vim and Emacs are both

excellent choices not only because of their incredible power but also because
they can easily be used to edit files on a remote server, a common task for the
data scientist. Each of these editors is highly configurable with plugins that
can handle code completion, highlighting, linting, and more. If you must have
an IDE, take a look at PyCharm (the community edition is free) from the
IDE wizards at JetBrains, Spyder, and Ninja-IDE. You will find that most
Python IDEs are better suited for web development as opposed to data work.

See also

You can also take a look at the following for reference:

For more information on pandas, refer to the Python Data Analysis
Library article at http://pandas.pydata.org/
Visit the NumPy website at http://www.numpy.org/
Visit the SciPy website at http://www.scipy.org/
Visit the matplotlib website at http://matplotlib.org/
Visit the IPython website at http://ipython.org/ï»¿
Refer the History of SciPy article at
http://wiki.scipy.org/History_of_SciPy
Visit the MacPorts home page at http://www.macports.org/
Visit the XCode web page at
https://developer.apple.com/xcode/features/
Visit the XCode download page at
https://developer.apple.com/xcode/downloads/

http://pandas.pydata.org/
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://ipython.org/
http://ipython.org/
http://wiki.scipy.org/History_of_SciPy
http://www.macports.org/
https://developer.apple.com/xcode/features/
https://developer.apple.com/xcode/downloads/%20

Installing extra Python packages

There are a few additional Python libraries that you will need throughout this
book. Just as R provides a central repository for community-built packages,
so does Python in the form of the Python Package Index (PyPI). As of
August 28, 2014, there were 48,054 packages in PyPI.

Getting ready

A reasonable Internet connection is all that is needed for this recipe. Unless
otherwise specified, these directions assume that you are using the default
Python distribution that came with your system, and not Anaconda.

How to do it...

The following steps will show you how to download a Python package and
install it from the command line:

1. Download the source code for the package in the place you like to keep
your downloads.

2. Unzip the package.
3. Open a terminal window.
4. Navigate to the base directory of the source code.
5. Type in the following command:

python setup.py install

6. If you need root access, type in the following command:

sudo python setup.py install

To use pip, the contemporary and easiest way to install Python packages,
follow these steps:

1. First, let's check whether you have pip already installed by opening a
terminal and launching the Python interpreter. At the interpreter, type:

>>>import pip

2. If you don't get an error, you have pip installed and can move on to step
5. If you see an error, let's quickly install pip.

3. Download the get-pip.py file from
https://raw.github.com/pypa/pip/master/contrib/get-pip.py onto your
machine.

4. Open a terminal window, navigate to the downloaded file, and type:

python get-pip.py

Alternatively, you can type in the following command:

sudo python get-pip.py

5. Once pip is installed, make sure you are at the system command prompt.
6. If you are using the default system distribution of Python, type in the

following:

pip install networkx

Alternatively, you can type in the following command:

sudo pip install networkx

7. If you are using the Anaconda distribution, type in the following
command:

conda install networkx

8. Now, let's try to install another package, ggplot. Regardless of your
distribution, type in the following command:

pip install ggplot

Alternatively, you can type in the following command:

sudo pip install ggplot

https://raw.github.com/pypa/pip/master/contrib/get-pip.py

How it works...

You have at least two options to install Python packages. In the preceding old
fashioned way, you download the source code and unpack it on your local
computer. Next, you run the included setup.py script with the install flag.
If you want, you can open the setup.py script in a text editor and take a more
detailed look at exactly what the script is doing. You might need the sudo
command, depending on the current user's system privileges.

As the second option, we leverage the pip installer, which automatically
grabs the package from the remote repository and installs it to your local
machine for use by the system-level Python installation. This is the preferred
method, when available.

There's more...

The pip is capable, so we suggest taking a look at the user guide online. Pay
special attention to the very useful pip freeze > requirements.txt
functionality so that you can communicate about external dependencies with
your colleagues.

Finally, conda is the package manager and pip replacement for the Anaconda
Python distribution or, in the words of its home page, a cross-platform,
Python-agnostic binary package manager. Conda has some very lofty
aspirations that transcend the Python language. If you are using Anaconda,
we encourage you to read further on what conda can do and use it, and not
pip, as your default package manager.

See also

You can also refer to the following:

Refer to the pip User Guide at http://www.pip-
installer.org/en/latest/user_guide.html
Visit the Conda home page at http://conda.pydata.org
Refer to the Conda blog posts from Continuum Blog at

http://www.pip-installer.org/en/latest/user_guide.html
http://conda.pydata.org

http://www.continuum.io/blog/conda

http://www.continuum.io/blog/conda

Installing and using virtualenv

virtualenv is a transformative Python tool. Once you start using it, you will
never look back. virtualenv creates a local environment with its own Python
distribution installed. Once this environment is activated from the shell, you
can easily install packages using pip install into the new local Python.

At first, this might sound strange. Why would anyone want to do this? Not
only does this help you handle the issue of package dependencies and
versions in Python but also allows you to experiment rapidly without
breaking anything important. Imagine that you build a web application that
requires Version 0.8 of the awesome_template library, but then your new data
product needs the awesome_template library Version 1.2. What do you do?
With virtualenv, you can have both.

As another use case, what happens if you don't have admin privileges on a
particular machine? You can't install the packages using sudo pip install
required for your analysis so what do you do? If you use virtualenv, it doesn't
matter.

Virtual environments are development tools that software developers use to
collaborate effectively. Environments ensure that the software runs on
different computers (for example, from production to development servers)
with varying dependencies. The environment also alerts other developers to
the needs of the software under development. Python's virtualenv ensures that
the software created is in its own holistic environment, can be tested
independently, and built collaboratively.

Getting ready

Assuming you have completed the previous recipe, you are ready to go for
this one.

How to do it...

Install and test the virtual environment using the following steps:

1. Open a command-line shell and type in the following command:

pip install virtualenv

Alternatively, you can type in the following command:

sudo pip install virtualenv

2. Once installed, type virtualenv in the command window, and you
should be greeted with the information shown in the following
screenshot:

3. Create a temporary directory and change location to this directory using
the following commands:

mkdir temp
cd temp

4. From within the directory, create the first virtual environment named

venv:

virtualenv venv

5. You should see text similar to the following:

New python executable in venv/bin/python
Installing setuptools, pip...done.

6. The new local Python distribution is now available. To use it, we need to
activate venv using the following command:

source ./venv/bin/activate

7. The activated script is not executable and must be activated using the
source command. Also, note that your shell's command prompt has
probably changed and is prefixed with venv to indicate that you are now
working in your new virtual environment.

8. To check this fact, use which to see the location of Python, as follows:

which python

You should see the following output:

/path/to/your/temp/venv/bin/python

So, when you type python once your virtual environment is activated, you
will run the local Python.

9. Next, install something by typing the following:

pip install flask

Flask is a micro-web framework written in Python; the preceding command
will install a number of packages that Flask uses.

10. Finally, we demonstrate the versioning power that virtual environment
and pip offer, as follows:

pip freeze > requirements.txt
cat requirements.txt

This should produce the following output:

Flask==0.10.1
Jinja2==2.7.2
MarkupSafe==0.19
Werkzeug==0.9.4
itsdangerous==0.23
wsgiref==0.1.2

11. Note that not only the name of each package is captured, but also the
exact version number. The beauty of this requirements.txt file is that,
if we have a new virtual environment, we can simply issue the following
command to install each of the specified versions of the listed Python
packages:

pip install -r requirements.txt

12. To deactivate your virtual environment, simply type the following at the
shell prompt:

deactivate

How it works...

virtualenv creates its own virtual environment with its own installation
directories that operate independently from the default system environment.
This allows you to try out new libraries without polluting your system-level
Python distribution. Further, if you have an application that just works and
want to leave it alone, you can do so by making sure the application has its
own virtualenv.

There's more...

virtualenv is a fantastic tool, one that will prove invaluable to any Python
programmer. However, we wish to offer a note of caution. Python provides
many tools that connect to C-shared objects in order to improve performance.
Therefore, installing certain Python packages, such as NumPy and SciPy,
into your virtual environment may require external dependencies to be

compiled and installed, which are system specific. Even when successful,
these compilations can be tedious, which is one of the reasons for
maintaining a virtual environment. Worse, missing dependencies will cause
compilations to fail, producing errors that require you to troubleshoot alien
error messages, dated make files, and complex dependency chains. This can
be daunting even to the most veteran data scientist.

A quick solution is to use a package manager to install complex libraries into
the system environment (aptitude or Yum for Linux, Homebrew or MacPorts
for OS X, and Windows will generally already have compiled installers).
These tools use precompiled forms of the third-party packages. Once you
have these Python packages installed in your system environment, you can
use the --system-site-packages flag when initializing a virtualenv. This
flag tells the virtualenv tool to use the system site packages already
installed and circumvents the need for an additional installation that will
require compilation. In order to nominate packages particular to your
environment that might already be in the system (for example, when you
wish to use a newer version of a package), use pip install -I to install
dependencies into virtualenv and ignore the global packages. This
technique works best when you only install large-scale packages on your
system, but use virtualenv for other types of development.

For the rest of the book, we will assume that you are using a virtualenv and
have the tools mentioned in this chapter ready to go. Therefore, we won't
enforce or discuss the use of virtual environments in much detail. Just
consider the virtual environment as a safety net that will allow you to perform
the recipes listed in this book in isolation.

See also

You can also refer to the following:

Read an introduction to virtualenv at
http://www.virtualenv.org/en/latest/virtualenv.html
Explore virtualenvwrapper at
http://virtualenvwrapper.readthedocs.org/en/latest/
Explore virtualenv at https://pypi.python.org/pypi/virtualenv

http://www.virtualenv.org/en/latest/virtualenv.html
http://virtualenvwrapper.readthedocs.org/en/latest/
https://pypi.python.org/pypi/virtualenv

Chapter 2. Driving Visual Analysis with
Automobile Data with R
In this chapter, we will cover the following:

Acquiring automobile fuel efficiency data
Preparing R for your first project
Importing automobile fuel efficiency data into R
Exploring and describing fuel efficiency data
Analyzing automobile fuel efficiency over time
Investigating the makes and models of automobiles

Introduction

The first project we will introduce in this book is an analysis of automobile
fuel economy data. The primary tool that we will use to analyze this dataset is
the R statistical programming language. R is often referred to as the lingua
franca of data science since it is currently the most popular language for
statistics and data analysis. As you'll see from the examples in this book, R is
an excellent tool for data manipulation, analysis, modeling, visualization, and
creating useful scripts to get analytical tasks done.

The recipes in this chapter will roughly follow these five steps in the data
science pipeline:

Acquisition
Exploration and understanding
Munging, wrangling, and manipulation
Analysis and modeling
Communication and operationalization

Process-wise, the backbone of data science is the data science pipeline, and in
order to get good at data science, you need to gain experience going through
this process while swapping various tools and methods along the way so that
you always use the ones that are appropriate for the dataset you are
analyzing.

The goal of this chapter is to guide you through an analysis project on
automobile fuel efficiency via step-by-step examples that you can learn from
and then apply to other datasets and analysis projects in the future. Think of
this chapter as a warm-up for the longer and more challenging chapters to
come.

Acquiring automobile fuel efficiency data

Every data science project starts with data and this chapter begins in the same
manner. For this recipe, we will dive into a dataset that contains fuel
efficiency performance metrics, measured in Miles Per Gallon (MPG) over
time, for most makes and models of automobiles available in the US since
1984. This data is courtesy of the U.S. Department of Energy and the US
Environmental Protection Agency. In addition to fuel efficiency data, the
dataset also contains several features and attributes of the automobiles listed,
thereby providing the opportunity to summarize and group data to determine
which groups tend to have better fuel efficiency historically and how this has
changed over the years. The latest version of the dataset is available at
http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip, and information
about the variables in the dataset can be found at
http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle. The data was last
updated on December 4, 2013 and was downloaded on December 8, 2013.

Note

We recommend that you use the copy of the dataset provided
with the code for this book to ensure that the results described in
this chapter match what your efforts produce.

Getting ready

To complete this recipe, you will need a computer with access to the Internet
and a text editor of your choice.

How to do it...

Perform the following simple steps to acquire the data needed for the rest of
this chapter:

http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip
http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle

1. Download the dataset from:
http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip

2. Unzip vehicles.csv with the decompression tool of your choice and
move it to your working code directory.

3. Take a moment and open the unzipped vehicles.csv file with
Microsoft Excel, Google Spreadsheet, or a simple text editor. Comma-
separated value (CSV) files are very convenient to work with as they
can be edited and viewed with very basic and freely available tools.
With the file open, scroll through some of the data and get a sense of
what you will be working with.

4. Navigate to http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle.
5. Select and copy all the text below the vehicle heading under Data

Description, and paste it into a text file. Do not include the emissions
heading. Save this file in your working directory as varlabels.txt. The
first five lines of the file are as follows:

atvtype - type of alternative fuel or advanced technology vehicle
barrels08 - annual petroleum consumption in barrels for fuelType1 (1)
barrelsA08 - annual petroleum consumption in barrels for fuelType2 (1)
charge120 - time to charge an electric vehicle in hours at 120 V
charge240 - time to charge an electric vehicle in hours at 240 V

Note

Note that this file is provided for your convenience in the
repository containing this chapter's code.

How it works...

There isn't much to explain in this first simple recipe, but note that we are
starting off relatively easily here. In many data science projects, you will not
be able to access and view the data so easily.

http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip
http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle

Preparing R for your first project

For the following recipes, you will need the R statistical programming
language installed on your computer (either the base R or RStudio, but the
authors strongly recommend using the excellent and free RStudio) and the
automobile fuel efficiency dataset. This quick recipe will help you ensure that
you have everything that you will need to complete this analysis project.

Getting ready

You will need an internet connection to complete this recipe, and we assume
that you have installed RStudio for your particular platform, based on the
instructions in the previous chapter.

How to do it...

If you are using RStudio, the following three steps will get you ready to roll:

1. Launch RStudio on your computer.
2. At the R console prompt, install the three R packages needed for this

project:

install.packages("plyr")
install.packages("ggplot2")
install.packages("reshape2")

3. Load the R packages as follows:

library(plyr)
library(ggplot2)
library(reshape2)

There's more...

R's strength comes from the community that has developed around the
language and the packages that have been created and made available by the
ones in the community. There are currently over 4,000 packages and libraries
that you can import and utilize to make your data analysis tasks much easier.

Dr. Hadley Wickham is a notable member of the R community and he has
produced a large number of highly regarded and often-used R packages. In
this chapter you will primarily use two of his biggest hits, plyr and ggplot2
and a third package called reshape2. The packageÂ plyr will be used to
apply the split-apply-combine data analysis pattern, explained later in this
chapter, to our dataset and ggplot2 will make complex data visualizations
significantly easier.

See also

The R Project for Statistical Computing web page at http://www.r-
project.org/
Visit the RStudio home page at http://www.rstudio.com/
Refer to the R Tutorial at http://www.cyclismo.org/tutorial/R/
A comprehensive guide to R at
http://www.statmethods.net/about/sitemap.html
Refer to the plyr reference manual at http://cran.r-
project.org/web/packages/plyr/plyr.pdf
Refer to the ggplot2 reference manual at http://cran.r-
project.org/web/packages/ggplot2/ggplot2.pdf
Visit Dr. Wickham's home page http://had.co.nz/

http://www.r-project.org/
http://www.rstudio.com/
http://www.cyclismo.org/tutorial/R/
http://www.statmethods.net/about/sitemap.html
http://cran.r-project.org/web/packages/plyr/plyr.pdf
http://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
http://had.co.nz/

Importing automobile fuel efficiency data
into R

Once you have downloaded and installed everything in the previous recipe,
Preparing R for your first project, you can import the dataset into R to start
doing some preliminary analysis and get a sense of what the data looks like.

Getting ready

Much of the analysis in this chapter is cumulative, and the efforts of the
previous recipes will be used for subsequent recipes. Thus, if you completed
the previous recipe, you should have everything you need to continue.

How to do it...

The following steps will walk you through the initial import of the data into
the R environment:

1. First, set the working directory to the location where we saved the
vehicles.csv.zip file:

setwd("path")

Substitute the path for the actual directory.

2. We can load the data directly from compressed (ZIP) files, as long as
you know the filename of the file inside the ZIP archive that you want to
load:

vehicles <- read.csv(unz("vehicles.csv.zip", "vehicles.csv"),
 stringsAsFactors = F)

3. To see whether this worked, let's display the first few rows of data using

the head command:

head(vehicles)

You should see the first few rows of the dataset printed on your screen.

Note

Note that we could have used the tail command, which would
have displayed the last few rows of the data frame instead of the
first few rows.

4. The labels command gives the variable labels for the vehicles.csv
file. Note that we use labels, since labels is a function in R. A quick
look at the file shows that the variable names and their explanations are
separated by -. So we will try to read the file using - as the separator:

labels <- read.table("varlabels.txt", sep = "-", header = FALSE)
Error: line 11 did not have 2 elements

5. This doesn't work! A closer look at the error shows that in line 11 of the
data file, there are two - symbols, and it thus gets broken into three parts
rather than two, unlike the other rows. We need to change our file-
reading approach to ignore hyphenated words:

labels <- do.call(rbind, strsplit(readLines("varlabels.txt"), " - "))

6. To check whether it works, we use the head function again:

head(labels)

 [,1] [,2]
[1,] "atvtype" "type of alternative fuel or advanced
 technology vehicle"
[2,] "barrels08" "annual petroleum consumption in barrels for
 fuelType1 (1)"
[3,] "barrelsA08" "annual petroleum consumption in barrels for
 fuelType2 (1)"
[4,] "charge120" "time to charge an electric vehicle in hours
 at 120 V"
[5,] "charge240" "time to charge an electric vehicle in hours

 at 240 V"

How it works...

Let's break down the last complex statement in step 5, piece-by-piece,
starting from the innermost portion and working outwards. First, let's read the
file line by line:

x <- readLines("varlabels.txt")

Each line needs to be split at the string -. The spaces are important, so we
don't split hyphenated words (such as in line 11). This results in each line
split into two parts as a vector of strings, and the vectors stored in a single
list:

y <- strsplit(x, " - ")

Now, we stack these vectors together to make a matrix of strings, where the
first column is the variable name and the second column is the description of
the variable:

labels <- do.call(rbind, y)

There's more...

Astute readers might have noticed that the read.csv function call included
stringsAsFactors = F as its final parameter. By default, R converts strings
to a datatype, known as factors in many cases. Factors are the names for R's
categorical datatype, which can be thought of as a label or tag applied to the
data. Internally, R stores factors as integers with a mapping to the appropriate
label. This technique allows older versions of R to store factors in much less
memory than the corresponding character.

Categorical variables do not have a sense of order (where one value is
considered greater than another). In the following snippet, we create a quick
toy example converting four values of the character class to factor and do a
comparison:

colors <- c('green', 'red', 'yellow', 'blue')
colors_factors <- factor(colors)
colors_factors
[1] green red yellow blue
Levels: blue green red yellow
colors_factors[1] > colors_factors[2]
[1] NA
Warning message:
In Ops.factor(colors_factors[1], colors_factors[2]) :
>not meaningful for factors

However, there is an ordered categorical variable, also known in the
statistical world as ordinal data. Ordinal data is just like categorical data, with
one exception. There is a sense of scale or value to the data. It can be said
that one value is larger than another, but the magnitude of the difference
cannot be measured.

Furthermore, when importing data into R, we often run into the situation
where a column of numeric data might contain an entry that is non-numeric.
In this case, R might import the column of data as factors, which is often not
what was intended by the data scientist. Converting from factor to character
is relatively routine, but converting from factor to numeric can be a bit tricky.

R is capable of importing data from a wide range of formats. In this recipe,
we handled a CSV file, but we could have used a Microsoft Excel file as
well. CSV files are preferred as they are universally supported across
operating systems and are far more portable. Additionally, R can import data
from numerous popular statistical programs, including SPSS, Stata, and
SAS.

See also

Refer to the R Data Import/Export guide at http://cran.r-
project.org/doc/manuals/r-release/R-data.html
Explore the datatypes in R at
http://www.statmethods.net/input/datatypes.html

http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://www.statmethods.net/input/datatypes.html

Exploring and describing fuel efficiency
data

Now that we have imported the automobile fuel efficiency dataÂ into R and
learned a little about the nuances of importing, the next step is to do some
preliminary analysis of the dataset. The purpose of this analysis is to explore
what the data looks like and get your feet wet with some of R's most basic
commands.

Getting ready

If you have completed the previous recipe, you should have everything that
you need to continue.

How to do it...

The following steps will lead you through the initial exploration of our
dataset, where we compute some of its basic parameters:

1. First, let's find out how many observations (rows) are in our data:

nrow(vehicles)
34287

2. Next, let's find out how many variables (columns) are in our data:

ncol(vehicles)
74

3. Now, let's get a sense of which columns of data are present in the data
frame using the namesÂ function:

> names(vehicles)

The preceding command will give you the following output:

Luckily, a lot of these column or variable names are pretty descriptive and
give us an idea of what they might contain. Remember, a more detailed
description of the variables is available at
http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle.

4. Let's find out how many unique years of data are included in this dataset
by computing a vector of the unique values in the year column, and then
computing the length of that vector:

length(unique(vehicles[, "year"]))

31

5. Now we determine the first and last years present in the dataset using the
min and max functions:

first_year <- min(vehicles[, "year"])
1984
last_year <- max(vehicles[, "year"])
2014

Note

Note that we could have used the tail command, which would
have displayed the last few rows of the data frame instead of the
first few rows.

http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle

6. Also, since we might use the year variable a lot, let's make sure that we
have each year covered. The list of years from 1984 to 2014 should
contain 31 unique values. To test this, use the following command:

> length(unique(vehicles$year))

[1] 31

7. Next, let's find out what types of fuel are used as the automobiles'
primary fuel types:

table(vehicles$fuelType1)

Diesel Electricity Midgrade Gasoline Natural Gas
1025 56 41
Premium Gasoline Regular Gasoline
8521 24587

From this, we can see that most cars in the dataset use regular gasoline, and
the second most common fuel type is premium gasoline.

8. Let's explore the types of transmissions used by these automobiles. We
first need to take care of all missing data by setting it to NA:

vehicles$trany[vehicles$trany == ""] <- NA

9. Now, the trany column is text, and we only care about whether the
car's transmission is automatic or manual. Thus, we use the substr
function to extract the first four characters of each trany column value
and determine whether it is equal to Auto. If so, we set a new variable,
trany2, equal to Auto; otherwise, the value is set to Manual:

vehicles$trany2 <- ifelse(substr(vehicles$trany, 1, 4) == "Auto",
 "Auto", "Manual")

10. Finally, we convert the new variable to a factor and then use the table
function to see the distribution of values:

vehicles$trany <- as.factor(vehicles$trany)
table(vehicles$trany2)
Auto Manual
22451 11825

We can see that there are roughly twice as many automobile models with
automatic transmission as there are models with manual transmission.

How it works...

The data frame is an incredibly powerful datatype used by R, and we will
leverage it heavily throughout this recipe. The data frame allows us to group
variables of different datatypes (numeric, strings, logical, factors, and so on)
into rows of related information. One example will be a data frame of
customer information. Each row in the data frame can contain the name of the
person (a string), along with an age (numeric), a gender (a factor), and a flag
to indicate whether they are a current customer (Boolean). If you are familiar
with relational databases, this is much like a table in a database.

Furthermore, in this recipe, we looked at several ways of getting a quick read
on a dataset imported into R. Most notably, we used the powerful table
function to create a count of the occurrence of values for the fuelType1
variable. This function is capable of much more, including cross tabulations,
as follows:

with(vehicles, table(sCharger, year))

The preceding command will give you the following output:

Here, we looked at the number of automobile models by year, with and
without a super charger (and we saw that super chargers have seemingly
become more popular more recently than they were in the past).

Also, note that we use the with command. This command tells R to use
vehicles as the default data when performing the subsequent command, in
this case, table. Thus, we can omit prefacing the sCharger and year column

names with the name of the data frame and vehicles, followed by the dollar
sign.

There's more...

To provide a cautionary tale about data import, let's look at the sCharger and
tCharger columns more closely. Note that these columns indicate whether
the car contains a super charger or a turbo charger, respectively.

Starting with sCharger, we look at the class of the variable and the unique
values present in the data frame:

> class(vehicles$sCharger)
[1] "character"
> unique(vehicles$sCharger)
[1] "" "S"

We next look at tCharger, expecting things to be the same:

> class(vehicles$tCharger)
[1] "logical"
> unique(vehicles$tCharger)
[1] NA TRUE

However, what we find is that these two seemingly similar variables are
different datatypes completely. While the tCharger variable is a logical
variable, also known as a Boolean variable in other languages, and it is used
to represent the binary values of TRUE and FALSE, the sCharger variable
appears to be the more general character datatype. Something seems wrong.
In this case, because we can, let's check the original data. Luckily, the data is
in a .csv file, and we can use a simple text editor to open and read the file
(Notepad on Windows and vi on Unix systems are recommended for the task,
but feel free to use your favorite, basic text editor). When we open the file,
we can see that sCharger and tCharger data columns either are blank or
contain an S or T, respectively.

Thus, R has read in the T character in the tCharger column as a Boolean
TRUE variable, as opposed to the character T. This isn't a fatal flaw and might
not impact an analysis. However, undetected bugs such as this can cause

problems far down the analytical pipeline and necessitate significant repeated
work.

Analyzing automobile fuel efficiency over
time

We have now successfully imported the data and looked at some important
high-level statistics that provided us with a basic understanding of what
values are in the dataset and how frequently some features appear. With this
recipe, we continue the exploration by looking at some of the fuel efficiency
metrics over time and in relation to other data points.

Getting ready

If you completed the previous recipe, you should have everything you need to
continue.

How to do it...

The following steps will use both plyr and the graphics library, ggplot2, to
explore the dataset:

1. Let's start by looking at whether there is an overall trend of how MPG
changes over time on average. To do this, we use the ddply function
from the plyr package to take the vehicles data frame, aggregate rows
by year, and then, for each group, we compute the mean highway, city,
and combine fuel efficiency. The result is then assigned to a new data
frame, mpgByYr. Note that this is our first example of split-apply-
combine. We split the data frame into groups by year, we apply the
mean function to specific variables, and then we combine the results into
a new data frame:

mpgByYr <- ddply(vehicles, ~year, summarise, avgMPG =
 mean(comb08), avgHghy = mean(highway08), avgCity =
 mean(city08))

2. To gain a better understanding of this new data frame, we pass it to the
ggplot function, telling it to plot the avgMPG variable against the year
variable, using points. In addition, we specify that we want axis labels, a
title, and even a smoothed conditional mean (geom_smooth())
represented as a shaded region of the plot:

ggplot(mpgByYr, aes(year, avgMPG)) + geom_point() +
 geom_smooth() + xlab("Year") + ylab("Average MPG") +
 ggtitle("All cars")
geom_smooth: method="auto" and size of largest group is <1000, so using
loess. Use 'method = x' to change the smoothing method.

The preceding commands will give you the following plot:

3. Based on this visualization, one might conclude that there has been a
tremendous increase in the fuel economy of cars sold in the last few

years. However, this can be a little misleading as there have been more
hybrid and non-gasoline vehicles in later years, which is shown as
follows:

table(vehicles$fuelType1)

Diesel Electricity Midgrade Gasoline Natural Gas
1025 56 41
Premium Gasoline Regular Gasoline
8521 24587

4. Let's look at just gasoline cars, even though there are not many non-
gasoline powered cars, and redraw the preceding plot. To do this, we use
the subset function to create a new data frame, gasCars, which only
contains the rows of vehicles in which the fuelType1 variable is one
among a subset of values:

gasCars <- subset(vehicles, fuelType1 %in% c("Regular Gasoline",
"Premium Gasoline", "Midgrade Gasoline") & fuelType2 == "" & atvType != "Hybrid")
mpgByYr_Gas <- ddply(gasCars, ~year, summarise, avgMPG = mean(comb08))
ggplot(mpgByYr_Gas, aes(year, avgMPG)) + geom_point() +
 geom_smooth() + xlab("Year") + ylab("Average MPG") + ggtitle("Gasoline cars")
geom_smooth: method="auto" and size of largest group is <1000, so using
loess. Use 'method = x' to change the smoothing method.

The preceding commands will give you the following plot:

5. Have fewer large engine cars been made recently? If so, this can explain
the increase. First, let's verify whether cars with larger engines have
worse fuel efficiency. We note that the displ variable, which represents
the displacement of the engine in liters, is currently a string variable that
we need to convert to a numeric variable:

typeof(gasCars$displ)

"character"
gasCars$displ <- as.numeric(gasCars$displ)
ggplot(gasCars, aes(displ, comb08)) + geom_point() +
 geom_smooth()

geom_smooth: method="auto" and size of largest group is >=1000, so using
gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
smoothing method.
Warning: Removed 2 rows containing missing values
 (stat_smooth).
Warning: Removed 2 rows containing missing values
 (geom_point).

The preceding commands will give you the following plot:

This scatter plot of the data offers the convincing evidence that there is a
negative, or even inverse correlation, between engine displacement and fuel
efficiency; thus, smaller cars tend to be more fuel-efficient.

6. Now, let's see whether more small cars were made in later years, which
can explain the drastic increase in fuel efficiency:

avgCarSize <- ddply(gasCars, ~year, summarise, avgDispl = mean(displ))

ggplot(avgCarSize, aes(year, avgDispl)) + geom_point() +
 geom_smooth() + xlab("Year") + ylab("Average engine displacement (l)")

geom_smooth: method="auto" and size of largest group is <1000, so using
loess. Use 'method = x' to change the smoothing method.
Warning: Removed 1 rows containing missing values (stat_smooth).
Warning: Removed 1 rows containing missing values (geom_point).

The preceding commands will give you the following plot:

7. From the preceding figure, the average engine displacement has
decreased substantially since 2008. To get a better sense of the impact
this might have had on fuel efficiency, we can put both MPG and
displacement by year on the same graph. Using ddply, we create a new
data frame, byYear, which contains both the average fuel efficiency and
the average engine displacement by year:

byYear <- ddply(gasCars, ~year, summarise, avgMPG = mean(comb08),
 avgDispl = mean(displ))

> head(byYear)
 year avgMPG avgDispl
1 1984 19.12162 3.068449
2 1985 19.39469 NA

3 1986 19.32046 3.126514
4 1987 19.16457 3.096474
5 1988 19.36761 3.113558
6 1989 19.14196 3.133393

8. The head function shows us that the resulting data frame has three
columns: year, avgMPG, and avgDispl. To use the faceting capability of
ggplot2 to display Average MPG and Avg engine displacement by
year on separate but aligned plots, we must melt the data frame,
converting it from what is known as a wide format to a long format:

byYear2 = melt(byYear, id = "year")
 levels(byYear2$variable) <- c("Average MPG", "Avg engine displacement")

head(byYear2)
 year variable value
1 1984 Average MPG 19.12162
2 1985 Average MPG 19.39469
3 1986 Average MPG 19.32046
4 1987 Average MPG 19.16457
5 1988 Average MPG 19.36761
6 1989 Average MPG 19.14196

9. If we use the nrow function, we can see that the byYear2 data frame has
62 rows and the byYear data frame has only 31. The two separate
columns from byYear (avgMPG and avgDispl) have now been melted
into one new column (value) in the byYear2 data frame. Note that the
variable column in the byYear2 data frame serves to identify the column
that the value represents:

ggplot(byYear2, aes(year, value)) + geom_point() +
 geom_smooth() + facet_wrap(~variable, ncol = 1, scales =
 "free_y") + xlab("Year") + ylab("")
geom_smooth: method="auto" and size of largest group is <1000, so using
loess. Use 'method = x' to change the smoothing method.
 ## geom_smooth: method="auto" and size of largest group is <1000, so using
loess. Use 'method = x' to change the smoothing method.
Warning: Removed 1 rows containing missing values (stat_smooth).
Warning: Removed 1 rows containing missing values (geom_point).

The preceding commands will give you the following plot:

From this plot, we can see the following:

Engine sizes have generally increased until 2008, with a sudden increase
in large cars between 2006 and 2008.
Since 2009, there has been a decrease in the average car size, which
partially explains the increase in fuel efficiency.
Until 2005, there was an increase in the average car size, but the fuel
efficiency remained roughly constant. This seems to indicate that engine
efficiency has increased over the years.
The years 2006-2008 are interesting. Though the average engine size
increased quite suddenly, the MPG remained roughly the same as in
previous years. This seeming discrepancy might require more
investigation.

10. Given the trend towards smaller displacement engines, let's see whether

automatic or manual transmissions are more efficient for four cylinder
engines, and how the efficiencies have changed over time:

gasCars4 <- subset(gasCars, cylinders == "4")

ggplot(gasCars4, aes(factor(year), comb08)) + geom_boxplot() + facet_wrap(~trany2, ncol = 1) + theme(axis.text.x = element_text(angle = 45)) + labs(x = "Year", y = "MPG")

The preceding command will give you the following plot:

11. This time, ggplot2 was used to create box plots that help visualize the
distribution of values (and not just a single value, such as a mean) for
each year.

12. Next, let's look at the change in proportion of manual cars available each
year:

ggplot(gasCars4, aes(factor(year), fill = factor(trany2))) +
 geom_bar(position = "fill") + labs(x = "Year", y = "Proportion
 of cars", fill = "Transmission") + theme(axis.text.x =
 element_text(angle = 45)) + geom_hline(yintercept = 0.5,
 linetype = 2)

The preceding command will give you the following plot:

How it works...

The ggplot2 library is an open source implementation of the foundational
grammar of graphics by Wilkinson, Anand, and Grossman for R. The
Grammar of Graphics attempts to decompose statistical data visualizations
into component parts to better understand how such graphics are created.
With ggplot2, Hadley Wickham takes these ideas and implements a layered

approach, allowing the user to assemble complex visualizations from
individual pieces very quickly. Take, for example, the first graph for this
recipe, which shows the average fuel efficiency of all models of cars in a
particular year over time:

ggplot(mpgByYr, aes(year, avgMPG)) + geom_point() + geom_smooth() +
 xlab("Year") + ylab("Average MPG") + ggtitle("All cars")

To construct this plot, we first tell ggplot the data frame that will serve as the
data for the plot (mpgByYr), and then the aesthetic mappings that will tell
ggplot2 which variables will be mapped into visual characteristics of the
plot. In this case, aes(year, avgMPG) implicitly specifies that the year will
be mapped to the x axis and avgMPG will be mapped to the y axis.
geom_point() tells the library to plot the specified data as points and a
second geom, geom_smooth(), adds a shaded region showing the smoothed
mean (with a confidence interval set to 0.95, by default) for the same data.
Finally, the xlab(),Â ylab(), and ggtitle() functions are used to add
labels to the plot. Thus, we can generate a complex, publication quality graph
in a single line of code; ggplot2 is capable of doing far more complex plots.

Also, it is important to note that ggplot2, and the grammar of graphics in
general, does not tell you how best to visualize your data, but gives you the
tools to do so rapidly. If you want more advice on this topic, we strongly
recommend looking into the works of Edward Tufte, who has numerous
books on the matter, including the classic The Visual Display of Quantitative
Information, Graphics Press USA. Furthermore, ggplot2 does not allow for
dynamic data visualizations.

There's more...

In step 9, it appears that manual transmissions are more efficient than
automatic transmissions, and they both exhibit the same increase, on an
average, since 2008. However, there is something odd here. There appears to
be many very efficient cars (less than 40 MPG) with automatic transmissions
in later years, and almost no manual transmission cars with similar
efficiencies in the same time frame. The pattern is reversed in earlier years. Is
there a change in the proportion of manual cars available each year? Yes.

With this recipe, we threw you into the deep end of data analysis with R,
using two very important R packages, plyr and ggplot2. Just as traditional
software development has design patterns for common constructs, a few such
patterns are emerging in the field of data science. One of the most notable is
the split-apply-combine pattern highlighted by Dr. Hadley Wickham. In this
strategy, one breaks up the problem into smaller, more manageable pieces by
some variable. Once aggregated, you perform an operation on the new
grouped data, and then combine the results into a new data structure. As you
can see in this recipe, we used this strategy of split-apply-combine
repeatedly, examining the data from many different perspectives, as a result.

Beyond plyr, this recipe heavily leveraged the ggplot2 library, which
deserves additional exposition. We will refrain from providing an extensive
ggplot2 tutorial as there are a number of excellent tutorials available online.
What is important is that you understand the important idea of how ggplot2
allows you to construct such complex statistical visualizations in such a terse
fashion.

See also

Refer to The Split-Apply-Combine Strategy for Data Analysis paper at
http://www.jstatsoft.org/v40/i01/paper
Refer to The Grammar of Graphics, Leland Wilkinson, Springer Science
& Business Media
Refer to the Package 'ggplot2' article from CRAN at http://cran.r-
project.org/web/packages/ggplot2/ggplot2.pdf
Refer to the A Layered Grammar of Graphics article at
http://vita.had.co.nz/papers/layered-grammar.pdf

http://www.jstatsoft.org/v40/i01/paper
http://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf

Investigating the makes and models of
automobiles

With the first set of questions asked and answered about this dataset, let's
move on to additional analyses.

Getting ready

If you completed the previous recipe, you should have everything you need to
continue.

How to do it...

This recipe will investigate the makes and models of automobiles and how
they have changed over time:

1. Let's look at how the makes and models of cars inform fuel efficiency
over time. First, let's look at the frequency of the makes and models of
cars available in the US over this time and concentrate on four-cylinder
cars:

carsMake <- ddply(gasCars4, ~year, summarise, numberOfMakes = length(unique(make)))

ggplot(carsMake, aes(year, numberOfMakes)) + geom_point() + labs(x = "Year", y = "Number of available makes") + ggtitle("Four cylinder cars")

We see in the following graph that there has been a decline in the number of
makes available over this period, though there has been a small uptick in
recent times.

2. Can we look at the makes that have been available for every year of this
study? We find that there are only 12 manufactures that made four-
cylinder cars every year during this period:

uniqMakes <- dlply(gasCars4, ~year, function(x)
 unique(x$make))

commonMakes <- Reduce(intersect, uniqMakes)
commonMakes
[1] "Ford" "Honda" "Toyota" "Volkswagen"
 "Chevrolet"
[6] "Chrysler" "Nissan" "Dodge" "Mazda"
 "Mitsubishi"
[11] "Subaru" "Jeep"

3. How have these manufacturers done over time with respect to fuel
efficiency? We find that most manufacturers have shown improvement

over this time, though several manufacturers have demonstrated quite
sharp fuel efficiency increases in the last five years:

carsCommonMakes4 <- subset(gasCars4, make %in% commonMakes)
avgMPG_commonMakes <- ddply(carsCommonMakes4, ~year + make,
 summarise, avgMPG = mean(comb08))

ggplot(avgMPG_commonMakes, aes(year, avgMPG)) + geom_line() +
 facet_wrap(~make, nrow = 3)

The preceding commands will give you the following plot:

How it works...

In step 2, there is definitely some interesting magic at work, with a lot being
done in only a few lines of code. This is both a beautiful and a problematic
aspect of R. It is beautiful because it allows the concise expression of
programmatically complex ideas, but it is problematic because R code can be
quite inscrutable if you are not familiar with the particular library.

In the first line, we use dlply (not ddply) to take the gasCars4 data frame,
split it by year, and then apply the unique function to the make variable. For
each year, a list of the unique available automobile makes is computed, and
then dlply returns a list of these lists (one element each year). Note dlply,
and not ddply, because it takes a data frame (d) as input and returns a list (l)
as output, whereas ddply takes a data frame (d) as input and outputs a data
frame (d):

uniqMakes <- dlply(gasCars4, ~year, function(x) unique(x$make))
commonMakes <- Reduce(intersect, uniqMakes)
commonMakes

The next line is even more interesting. It uses the Reduce higher order
function, and this is the same Reduce function and idea in the map reduce
programming paradigm introduced by Google that underlies Hadoop. R is, in
some ways, a functional programming language and offers several higher
order functions as part of its core. A higher order function accepts another
function as input. In this line, we pass the intersect function to Reduce,
which will apply the intersect function pairwise to each element in the list
of unique makes per year that was created previously. Ultimately, this results
in a single list of automobile makes that is present every year.

The two lines of code express a very simple concept (determining all
automobile makes present every year) that took two paragraphs to describe.

There's more...

The final graph in this recipe is an excellent example of the faceted graphics
capabilities of ggplot2. Adding +facet_wrap(~make, nrow = 3) tells
ggplot2 that we want a separate set of axes for each make of automobile and
to distribute these subplots between three different rows. This is an incredibly
powerful data visualization technique as it allows us to clearly see patterns

that might only manifest for a particular value of a variable.

We kept things simple in this first data science project. The dataset itself was
small--only 12 megabytes uncompressed, easily stored, and handled on a
basic laptop. We used R to import the dataset, check the integrity of some
(but not all) of the data fields, and summarize the data. We then moved on to
exploring the data by asking a number of questions and using two key
libraries, plyr and ggplot2, to manipulate the data and visualize the results.
In this data science pipeline, our final stage was simply the text that we wrote
to summarize our conclusions and the visualizations produced by ggplot2.

See also

Read a great post titled Higher Order Functions in R,John Myles White
at http://www.johnmyleswhite.com/notebook/2010/09/23/higher-order-
functions-in-r/

http://www.johnmyleswhite.com/notebook/2010/09/23/higher-order-functions-in-r/

Chapter 3. Creating Application-Oriented
Analyses Using Tax Data and Python
In this chapter, we will cover:

Preparing for the analysis of top incomes
Importing and exploring the world's top incomes dataset
Analyzing and visualizing the top income data of the US
Furthering the analysis of the top income groups of the US
Reporting with Jinja2
Repeating the analysis in R

Introduction

In this book, we take a practical approach to data analysis with R and Python.
With relative ease, we can answer questions about particular datasets,
produce models, and export visualizations. For this reason, R is an excellent
choice for rapid prototyping and analytics since it is a domain-specific
language designed for statistical data analysis, and it does its job well.

In this book, we will take a look at a different approach to analytics that is
more geared towards production environments and applications. The data
science pipeline of hypothesis, acquisition, cleaning and munging, analysis,
modeling, visualization, and application is not a clean and linear process by
any means. Moreover, when the analysis is meant to be reproducible at scale
in an automated fashion, many new considerations and requirements enter
into the picture. Thus, many data applications require a broader toolkit. This
toolkit should still provide rapid prototyping, be generally available on all
systems, and provide full support for a range of computing operations,
including network operations, data operations, and scientific operations.
Given these requirements, Python becomes a clear contender as the tool of
choice for application-oriented analyses.

Python is an interpreted language (sometimes referred to as a scripting
language), much like R. It requires no special IDE or software compilation
tools and is therefore as fast as R to develop with and prototype. Like R, it
also makes use of C shared objects to improve computational performance.
Additionally, Python is a default system tool on Linux, Unix, and macOS X
machines and is available for Windows too. Python is loaded with batteries
which means that the standard library is widely inclusive of many modules
from multiprocessing to compression toolsets. Python is a flexible computing
powerhouse that can tackle any domain problem. If you find yourself in need
of libraries that are outside of the standard library, Python also comes with a
package manager (like R) that allows the download and installation of other
code bases.

Python's computational flexibility means that some analytical tasks take more
lines of code than their counterpart in R. However, Python does have the
tools that allow it to perform the same statistical computing. This leads to an
obvious question: When do we use R over Python and vice versa? This
chapter attempts to answer this question by taking an application-oriented
approach to statistical analyses.

An introduction to application-oriented approaches

Data applications and data products are interminably becoming part of our
everyday lives. These products have much farther reach than simple data-
driven web applications which include all manner of frontend web and
mobile applications that are backed by a database and include middleware to
handle transactions. By this definition, a simple blog is not fundamentally
different from a large-scale e-commerce site. Instead, data products and
appliances acquire their value from the data itself and create more data as a
result.

These types of applications can be utilized to enrich traditional applications
such as semantic tagging for the blog or recommendation engines for an e-
commerce site. On the other hand, they can be standalone data products in
their own right, including everything from quantified self devices to self-
driving vehicles.

The treatment and analyses of data in a live or streaming context seem to be
the defining characteristic of application-oriented analyses, unlike more
traditional data mining or statistical evaluations of a static dataset. In order to
deal with such data, a fair amount of programmatic nimbleness or dynamic
approaches are required and flexibility is precisely where Python shines in
the data science context.

Consider a specific example for a reporting task. Taking a snapshot of a data
window and manually compiling a report from gathered analytics with
charting graphics and visualizations is good practice to understand changing
data and get a feel for larger patterns. When this report needs to be run daily
on lower data volumes, schedulers could merely dump the report out to a file
every day. However, when the reporting task becomes hourly, or on demand,

it means the visualization application has become a static web application and
will probably require a central location. As this task and the data size grow,
adding constraints or queries on the report becomes important. This is a
typical life cycle for data applications and Python development is well suited
to handle these changing requirements.

We will describe, model, and visualize a dataset that contains the world's top
incomes and discuss the statistical toolkit in Python. However, as we go
through this chapter, we will also include notes on how the analyses and
methodologies we are utilizing can be framed in an application-oriented
context.

Preparing for the analysis of top incomes

For the following recipes, you will need Python installed on your computer
and you will need the world's top incomes dataset. This recipe will help
ensure you have set up everything you need to complete this analysis project.

Getting ready

To step through this recipe, you will need a computer with access to the
internet. Make sure you have downloaded and installed Python and the
necessary Python libraries to complete this project.

Note

Refer to Chapter 1, Preparing Your Data Science Environment,
to set up a Python development environment using virtualenv
and install the required libraries for matplotlib and NumPy.

How to do it...

The following steps will guide you to download the world's top incomes
dataset and install the necessary Python libraries to complete this project:

Note

The original dataset for the world's top incomes can be
downloaded from http://topincomes.g-
mond.parisschoolofeconomics.eu/. However, the site has been
updated several times, which has changed the output format of
the data (from .csv to .xlsx). This recipe assumes a .csv file
format. This chapter's repository contains the properly formatted
version of the input data file.

http://topincomes.g-mond.parisschoolofeconomics.eu/

1. Save the world's top incomes dataset to a location on your computer
where you will be able to find it.

2. Open up a terminal window and start a Python interpreter.
3. Check to make sure that the following three libraries, NumPy,

matplotlib, and Jinja2, are installed; try to import each:

In [2]: import numpy as np
 ...: import jinja2
 ...: import matplotlib as plt

Each of the preceding libraries should import without a comment or remark
from Python. If they do, you are good to go. If not, refer to Chapter 1,
Preparing Your Data Science Environment, to set up your system.

How it works...

NumPy is the fundamental scientific computing library for Python; it is
therefore essential to any data science toolkit, and we will leverage it in many
places throughout the Python chapters. However, since NumPy is an external
library that must be compiled for your system, we will discuss alternative
native-Python approaches alongside the NumPy approach.

Importing and exploring the world's top
incomes dataset

Once you have downloaded and installed everything in the previous recipe,
you can read the dataset with Python and then start doing some preliminary
analysis to get a sense of what the data you have looks like.

The dataset that we'll explore in this chapter was created by Alvaredo,
Facundo, Anthony B. Atkinson, Thomas Piketty, and Emmanuel Saez, The
World Top Incomes Database, http://topincomes.g-
mond.parisschoolofeconomics.eu/, 10/12/2013. It contains global information
about the highest incomes per country for approximately the past 100 years,
gleaned from tax records.

Getting ready

If you've completed the previous recipe, Preparing for the analysis of top
incomes, you should have everything you need to continue.

How to do it...

Let's use the following sequence of steps to import the data and start our
exploration of this dataset in Python:

1. With the following snippet, we will create a Python list in memory that
contains dictionaries of each row, where the keys are the column names
(the first row of the CSV contains the header information) and the
values are the values for that particular row:

In [3]: import csv
 ...: data_file = "../data/income_dist.csv"
 ...: with open(data_file, 'r') as csvfile:
 ...: reader = csv.DictReader(csvfile)
 ...: data = list(reader)

http://topincomes.g-mond.parisschoolofeconomics.eu/

Note

Note that the input file, income_dist.csv, might be in a different
directory in your system depending on where you place it.

2. We perform a quick check with len to reveal the number of records:

In [4]: len(data)
 ...:
Out[4]: 2180

3. When utilizing CSV data with headers, we check the field names on the
CSV reader itself, as well as getting the number of variables:

In [5]: len(reader.fieldnames)
 ...:
Out[5]: 354

4. While this data is not too large, let's start using best practices when
accessing it. Rather than holding all of the data in memory, we use a
generator to access the data one row at a time.

Generators are Python expressions that allow you to create functions that act
as iterables; rather than returning all of the data, they yield data one part at a
time in a memory-efficient iteration context. As our datasets get larger, it's
useful to use generators to perform filtering on demand and clean data as you
read it:

In [6]: def dataset(path):
 ...: with open(path, 'r') as csvfile:
 ...: reader = csv.DictReader(csvfile)
 ...: for row in reader:
 ...: yield row

Also, take note of the with open(path, 'r') as csvfile statement. This
statement ensures that the CSV file is closed when the with block is exited,
even (or especially) if there is an exception. Python with blocks replace the
try, except, and finally statements, and are syntactically brief while
semantically more correct programming constructs.

5. Using our new function, we can take a look to determine which
countries are involved in our dataset:

In [7]: print(set([row["Country"] for row in dataset(data_file)]))

 ...: set(['Canada', 'Italy', 'France', 'Netherlands', 'Ireland',...])

6. We can also inspect the range of years that this dataset covers, as
follows:

In [8]: print(min(set([int(row["Year"]) for row in dataset(data_file)])))
 ...:
1875

In [9]: print(max(set([int(row["Year"]) for row in dataset(data_file)])))
 ...:
2010

7. In both of these previous examples, we used a Python list
comprehension to generate a set. A comprehension is a concise
statement that generates an iterable, much like the earlier memory-safe
generators. The output variable (or variables) is specified, along with the
for keyword, and the iterable to express the variable, along with an
optional if condition. In Python 3.6, set and dictionary comprehensions
also exist. The previous country set could also be expressed as follows:

In [10]: {row["Country"] for row in dataset(data_file)}
 ...: set(['Canada', 'Italy', 'France', 'Netherlands', 'Ireland',...])
Out[10]: {'Netherlands', Ellipsis, 'Ireland', 'Canada', 'Italy', 'France'}

8. Finally, let's filter just the data for the United States so we can analyze it
exclusively:

In [11]: filter(lambda row: row["Country"] == "United States",
 ...: dataset(data_file))

Out[11]: <filter at 0xb1aeac8>

The Python filter function creates a list from all of the values of a sequence or
iterable (the second parameter) that make the function specified by the first
parameter true. In this case, we use an anonymous function (a Lambda
function) to check whether the value in the specified row's Country column is

equal to United States.

9. With this initial discovery and exploration of the dataset, we can now
take a look at some of the data using matplotlib, one of the main
scientific plotting packages available for Python and very similar to the
plotting capabilities of MATLAB:

In [12]: import csv
 ...: import numpy as np
 ...: import matplotlib.pyplot as plt

In [13]: def dataset(path, filter_field=None, filter_value=None):
 ...: with open(path, 'r') as csvfile:
 ...: reader = csv.DictReader(csvfile)
 ...: if filter_field:
 ...: for row in filter(lambda row:
 ...: row[filter_field]==filter_value, reader):
 ...: yield row
 ...: else:
 ...: for row in reader:
 ...: yield row

In [14]: def main(path):
 ...: data = [(row["Year"], float(row["Average income per tax unit"]))
 ...: for row in dataset(path, "Country", "United States")]
 ...: width = 0.35
 ...: ind = np.arange(len(data))
 ...: fig = plt.figure()
 ...: ax = plt.subplot(111)
 ...: ax.bar(ind, list(d[1] for d in data))
 ...: ax.set_xticks(np.arange(0, len(data), 4))
 ...: ax.set_xticklabels(list(d[0] for d in data)[0::4],rotation=45)
 ...: ax.set_ylabel("Income in USD")
 ...: plt.title("U.S. Average Income 1913-2008")
 ...: plt.show()

In [15]: if __name__ == "__main__":
 ...: main("income_dist.csv")

The preceding snippet will give us the following output:

The preceding example of data exploration with Python should seem familiar
from many of the R chapters. Loading the dataset, filtering, and computing
ranges required a few more lines of code and specific typecasting, but we
quickly created analyses in a memory-safe fashion.

10. When we moved on to creating charts, we started using NumPy and
matplotlib a bit more. NumPy can be used in a very similar fashion to
R, to load data from a CSV file to an array in memory and dynamically
determine the type of each column. To do this, the following two
module functions can be used:

genfromtext: This function creates an array from tabular data stored in
a text file with two main loops. The first converts each line of the file to
string sequences, and the second converts each string to an appropriate
datatype. It is a bit slower and not as memory efficient, but the result is a
convenient data table stored in memory. This function also handles
missing data, which other faster and simpler functions cannot.
recfromcsv: This function is a helper function based on genfromtext
that has default arguments set to provide access to a CSV file.

Have a look at the following snippet:

In [16]: import numpy as np

 ...: dataset = np.recfromcsv(data_file, skip_header=1)

 ...: dataset

array([[nan, 1.93200000e+03, nan, ...,
 nan, 1.65900000e+00, 2.51700000e+00],
 [nan, 1.93300000e+03, nan, ...,
 nan, 1.67400000e+00, 2.48400000e+00],
 [nan, 1.93400000e+03, nan, ...,
 nan, 1.65200000e+00, 2.53400000e+00],
 ...,
 [nan, 2.00600000e+03, 4.52600000e+01, ...,
 1.11936337e+07, 1.54600000e+00, 2.83000000e+00],
 [nan, 2.00700000e+03, 4.55100000e+01, ...,
 1.19172976e+07, 1.53000000e+00, 2.88500000e+00],
 [nan, 2.00800000e+03, 4.56000000e+01, ...,
 9.14119000e+06, 1.55500000e+00, 2.80300000e+00]])

The first argument to the function should be the data source. It should be
either a string that points to a local or remote file or a file-like object with a
read method. URLs will be downloaded to the current working directory
before they are loaded. Additionally, the input can be either text or a
compressed file. The function recognizes gzip and bzip2. These files need to
have the .gz or .bz2 extensions to be readable. Notable optional arguments
to genfromtext include the delimiter, , (comma) by default in
recfromcsv;skip_header and skip_footer, which take an optional number
of lines to skip from the top or bottom respectively; and dtype, which
specifies the datatype of the cells. By default, the dtype is None, and NumPy
will attempt to detect the correct format.

11. We can now get an overall sense of the scope of our data table:

In [17]: dataset.size

 ...:
Out[17]: 2179

In [18]: (len(dataset)+1)*len(dataset.T[1]) # works on 3.6
 ...:
Out[18]: 771720
In [19]: dataset.shape
 ...:
Out[19]: (2179,)

Note

Depending on your version of NumPy, you might see slightly
different output. The dataset.size statement might report back the
number of rows of data (2179), and the shape might output as
(2179,).

The size property on ndarray returns the number of elements in the matrix.
The shape property returns a tuple of the dimensions in our array. CSVs are
naturally two-dimensional, therefore the (m, n) tuple indicates the number of
rows and columns, respectively.

However, there are a couple of gotchas with using this method. First, note
that we had to skip our header line; genfromtxt does allow named columns
by setting the keyword argument names to True (and in this case, you won't
set skip_headers=1). Unfortunately, in this particular dataset, the column
names might contain commas. The CSV reader deals with this correctly since
the strings that contain commas are quoted, but genfromtxt is not a CSV
reader in general. To fix this, either the headers have to be fixed, or some
other names need to be added. Secondly, the Country column has been
reduced to NaN, and the Year column has been turned into a floating point
integer, which is not ideal.

12. A manual fix on the dataset is necessary, and this is not uncommon.
Since we know that there are 354 columns and the first two columns are
Country and Year, we can precompute our column names and datatypes:

In [20]: names = ["country", "year"]

 ...: names.extend(["col%i" % (idx+1) for idx in range(352)])
 ...: dtype = "S64,i4," + ",".join(["f18" for idx in range(352)])
 ...:
In [21]: dataset = np.genfromcsv(data_file, dtype=np.dtype, names=names,
 ...: delimiter=",", skip_header=1, autostrip=2)
 ...:

We name the first two columns country and year, respectively, and assign
them datatypes of S64 or string-64, and then assign the year column as i4 or
integer-4. For the rest of the columns, we assign them the name coln,

where n is an integer from 1 to 352, and the datatype is f18 or float-18.
These character lengths allow us to capture as much data as possible,
including exponential floating point representations.

Unfortunately, as we look through the data, we can see a lot of nan values
that represent Not a Number, a fixture in floating point arithmetic used to
represent values that are not numbers nor are equivalent to infinity. Missing
data is a very common issue in the data wrangling and cleaning stage of the
pipeline. It appears that the dataset contains many missing or invalid entries,
which makes sense given the historical data, and countries that may not have
had effective data collection for given columns.

13. In order to clean the data, we use a NumPy masked array, which is
actually a combination of a standard NumPy array and a mask, a set of
Boolean values that indicate whether the data in that position should be
used in computations or not. This can be done as follows:

import numpy.ma as ma
ma.masked_invalid(dataset['col1'])
masked_array(data = [-- -- -- ..., 45.2599983215332
 45.5099983215332 45.599998474121094],
mask = [True True True ..., False False False],fill_value =
 1e+20)

How it works...

Our dataset function has been modified to filter on a single field and value if
desired. If no filter has been specified, it generates the entire CSV. The main
piece of interest is what happens in the main function. Here, we generate a
bar chart of average incomes in the United States per year using matplotlib.
Let's walk through the code.

We collect our data as (year, avg_income) tuples in a list comprehension that
utilizes our special dataset method to filter data only for the United States.

Note

We have to cast the average income per tax unit to a float in order

to compute on it. In this case, we leave the year as a string since it
simply acts as a label; however, in order to perform datetime
computations, we might want to convert that year to a date using
datetime.strptime (row['Year'], '%Y').date().

After we have performed our data collection, filtering, and conversions, we
set up the chart. The width is the maximum width of a bar. An ind iterable
(ndarray) refers to the x axis locations for each bar; in this case, we want one
location for every data point in our set. A NumPy np.arange function is
similar to the built-in xrange functions; it returns an iterable (ndarray) of
evenly spaced values in the given interval. In this case, we provide a stop
value that is the length of the list and use the default start value of 0 and step
size of 1, but these can also be specified. The use of arange allows floating
point arguments, and it is typically much faster than simply instantiating the
full array of values.

The figure and subplot module functions utilize the matplotlab.pyplot
module to create the base figure and axes, respectively. The figure function
creates a new figure, or returns a reference to a previously created figure. The
subplot function returns a subplot axis positioned by the grid definition with
the following arguments: the number of rows, number of columns, and plot
number. This function has a convenience when all three arguments are less
than 10. Simply supplying a three-digit number with the respective values,
for example, plot.subplot (111), creates 1 x 1 axes in subplot 1.

We then use the subplot to create a bar chart from our data. Note the use of
another comprehension that passes the values of the incomes from our dataset
along with the indices we created with np.arange. On setting the x axis
labels, however, we notice that if we add all years as individual labels, the x
axis is unreadable. Instead, we add ticks for every 4 years, starting with the
first year. In this case, you can see that we use a step size of 4 in np.arange
to set our ticks, and similarly, in our labels, we use slices on the Python list to
step through every four labels. For example, for a given list, we will use:

mylist[s:e:t]

The slice of the list starts at s, ends at e, and has the step size t. Negative
numbers are also supported in slices to be iterated from the end of the list; for

example, mylist[-1] will return the last item of the list.

There's more...

NumPy is an incredibly useful and powerful library, but we should note some
very important differences. The list datatype in Python is wildly different
from the numpy array. The Python list can contain any number of different
datatypes, including lists. Thus, the following example list is perfectly valid:

python_list = ['bob' , 5.1, True, 1, [5, 3, 'sam']]

Underneath the hood, the Python list contains pointers to the memory
locations of the elements of the list. To access the first element of the list,
Python goes to the memory location for the list and grabs the first value
stored there. This value is a memory address for the first element. Python
then jumps to this new memory location to grab the value for the actual first
element. Thus, grabbing the first element of the list requires two memory
lookups.

NumPy arrays are very much like C. They must contain a single datatype,
and this allows the array to be stored in a contiguous block of memory, which
makes reading the array significantly faster. When reading the first element
of the array, Python goes to the appropriate memory address that contains the
actual value to be retrieved. When the next element in the array is needed, it
is right next to the location of the first element in memory, which makes
reading much faster.

See also

The NumPy documentation at
http://docs.scipy.org/doc/numpy/reference/
A strong tutorial on NumPy and SciPy at
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

http://docs.scipy.org/doc/numpy/reference/
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

Analyzing and visualizing the top income
data of the US

Now that we've imported and explored the top incomes dataset a bit, let's drill
down on a specific country and conduct some analyses on their income
distribution data. In particular, the United States has excellent data relating to
the top incomes by percentile, so we'll use the data of the United States in the
following exercises. If you choose other countries to leverage their datasets,
beware that you may need to use different fields to get the same analyses.

Getting ready

In order to conduct our analyses, we're going to create a few helper methods
that we will use continually throughout this chapter. Application-oriented
analyses typically produce reusable code that performs singular tasks in order
to adapt quickly to changing data or analysis requirements. In particular, let's
create two helper functions: one that extracts data by a particular country and
one that creates a time series from a set of particular rows:

In [22]: def dataset(path, country="United States"):
 ...: """
 ...: Extract the data for the country provided. Default is United States.
 ...: """
 ...: with open(path, 'r') as csvfile:
 ...: reader = csv.DictReader(csvfile)
 ...: for row in filter(lambda row: row["Country"]==country,reader):
 ...: yield row
 ...:

In [23]: def timeseries(data, column):
 ...: """
 ...: Creates a year based time series for the given column.
 ...: """
 ...: for row in filter(lambda row: row[column], data):
 ...: yield (int(row["Year"]), row[column])
 ...:

The first function iterates through the dataset using the csv.DictReader filter
on a particular country using Python's built-in filter function. The second
function leverages the fact that there is a Year column to create a time series
for the data, a generator that yields (year, value) tuples for a particular
column in the dataset. Note that this function should be passed in a generator
created by the dataset function. We can now utilize these two functions for a
series of analyses across any column for a single country.

How to do it...

Generally speaking, the data for the United States is broken up into six
groups:

Top 10 percent income share
Top 5 percent income share
Top 1 percent income share
Top 0.5 percent income share
Top 0.1 percent income share
Average income share

These groups reflect aggregations for data points collected in those specific
bins. An easy and quick first analysis is to simply plot these percentages of
income shares over time for each of the top income groups. Since plotting
several time series is going to be a common task, let's once again create a
helper function that wraps matplotlib and generates a line chart for each time
series that is passed to it:

In [24]: def linechart(series, **kwargs):
 ...: fig = plt.figure()
 ...: ax = plt.subplot(111)
 ...: for line in series:
 ...: line = list(line)
 ...: xvals = [v[0] for v in line]
 ...: yvals = [v[1] for v in line]
 ...: ax.plot(xvals, yvals)
 ...: if 'ylabel' in kwargs:
 ...: ax.set_ylabel(kwargs['ylabel'])
 ...: if 'title' in kwargs:
 ...: plt.title(kwargs['title'])
 ...: if 'labels' in kwargs:

 ...: ax.legend(kwargs.get('labels'))
 ...: return fig
 ...:

This function is very simple. It creates a matplotlib.pyplot figure as well
as the axis subplot. For each line in the series, it gets the x axis values
(remember that the first item in our time series time tuple is Year) as the first
item of the tuple and the y axis, which is the second value. It splits these into
separate generators and then plots them on the figure. Finally, any options we
want for our chart, such as labels or legends, we can simply pass as keyword
arguments, and our function will handle them for us! The following steps will
walk you through this recipe of application-oriented analysis.

In order to generate our chart, we simply need to use our time series function
on the columns we would like and pass them to the linechart function. This
simple task is now repeatable, and we'll use it a few times for the next few
charts:

In [25]: def percent_income_share(source):
 ...: """
 ...: Create Income Share chart
 ...: """
 ...: columns = (
 ...: "Top 10% income share",
 ...: "Top 5% income share",
 ...: "Top 1% income share",
 ...: "Top 0.5% income share",
 ...: "Top 0.1% income share",
 ...:)
 ...: source = list(dataset(source))
 ...: return linechart([timeseries(source, col) for col in columns],
 ...: labels=columns,
 ...: ,
 ...: ylabel="Percentage")
 ...:
 ...:

Note that I wrapped the generation of this chart in a function as well; this
way, we modify the chart as needed, and the function wraps the configuration
and generation of the chart itself. The function identifies the columns for the
line series and then fetches the dataset. For each column, it creates a time
series and then passes these time series to our linechart function with our

configuration options:

1. To generate the plot, we define the input parameter to the
percent_income_source function:

In [26]: percent_income_share(data_file)

 ...:
Out[26]:

The following screenshot shows the result, and you will use a similar pattern
in the rest of this chapter to use the functions to create the needed plots:

This graph tells us that the raw percentages for the income groups tend to
move in the same direction. When one group's income increases, the other
groups' incomes also increase. This seems like a good sanity check as folks
who are in the top 0.1 percent income bracket are also in the top 10 percent

income bracket, and they contribute a lot to the overall mean for each bin.
There is also a clear, persistent difference between each of the lines.

2. Looking at the raw percentages is useful, but we may also want to
consider how the percentages have changed over time, relative to what
the average percentage has been for that income group. In order to do
this, we can calculate the means of each group's percentages and then
divide all of the group's values by the mean we just calculated.

Since mean normalization is another common function that we might want to
perform on a range of datasets, we will once again create a function that will
accept a time series as input and return a new time series whose values are
divided by the mean:

In [27]: def normalize(data):

 ...: """

 ...: Normalizes the data set. Expects a timeseries input
 ...: """
 ...: data = list(data)
 ...: norm = np.array(list(d[1] for d in data), dtype="f8")
 ...: mean = norm.mean()
 ...: norm /= mean
 ...: return zip((d[0] for d in data), norm)
 ...:

3. We can now easily write another function that takes these columns and
computes the mean normalized time series:

In [28]: def mean_normalized_percent_income_share(source):
 ...: columns = (
 ...: "Top 10% income share",
 ...: "Top 5% income share",
 ...: "Top 1% income share",
 ...: "Top 0.5% income share",
 ...: "Top 0.1% income share",
 ...:)
 ...: source = list(dataset(source))
 ...: return linechart([normalize(timeseries(source, col)) for col in columns],
 ...: labels=columns,
 ...: ,
 ...: ylabel="Percentage")

 ...: mean_normalized_percent_income_share(data_file)
 ...: plt.show()
 ...:

Note how the following command snippet is very similar to the previous
function, except when it performs the normalization:

>>> fig = mean_normalized_percent_income_share(DATA)
>>> fig.show()

The preceding commands give us the following graph:

This graph shows us that the wealthier the group, the larger the percentage-
wise swings we tend to see in their incomes.

4. The dataset also breaks the group's income into categories, such as
income that includes capital gains versus income without capital gains.
Let's take a look at how each group's capital gains income fluctuates

over time.

Another common functionality is to compute the difference between two
columns and plot the resulting time series. Computing the difference between
two NumPy arrays is also very easy, and since it is common for our task, we
write yet another function to do the job:

In [29]: def delta(first, second):

 ...: """

 ...: Returns an array of deltas for the two arrays.
 ...: """
 ...: first = list(first)
 ...: years = yrange(first)
 ...: first = np.array(list(d[1] for d in first), dtype="f8")
 ...: second = np.array(list(d[1] for d in second), dtype="f8")
 ...: if first.size != second.size:
 ...: first = np.insert(first, [0,0,0,0], [None, None, None,None])
 ...: diff = first - second
 ...: return zip(years, diff)
 ...:

Furthermore, the following is an appropriate helper function:

In [30]: def yrange(data):
 ...: """
 ...: Get the range of years from the dataset
 ...: """
 ...: years = set()
 ...: for row in data:
 ...: if row[0] not in years:
 ...: yield row[0]
 ...: years.add(row[0])

This function once again creates NumPy arrays from each dataset, casting the
datatype to floats. Note that we need to get the list of years from one of the
datasets, so we gather it from the first dataset.

5. We also need to keep in mind that first.size needs to be the same as
second.size, for example, that each array shares the same
dimensionality. The difference is computed and the years are once again
zipped to the data to form a time series:

In [31]: def capital_gains_lift(source):
 ...: """
 ...: Computes capital gains lift in top income percentages over time chart
 ...: """
 ...: columns = (
 ...: ("Top 10% income share-including capital gains",
 ...: "Top 10% income share"),
 ...: ("Top 5% income share-including capital gains",
 ...: "Top 5% income share"),
 ...: ("Top 1% income share-including capital gains",
 ...: "Top 1% income share"),
 ...: ("Top 0.5% income share-including capital gains",
 ...: "Top 0.5% income share"),
 ...: ("Top 0.1% income share-including capital gains",
 ...: "Top 0.1% income share"),
 ...: ("Top 0.05% income share-including capital gains",
 ...: "Top 0.05% income share"),
 ...:)
 ...: source = list(dataset(source))
 ...: series = [delta(timeseries(source, a), timeseries(source,b))
 ...: for a, b in columns]
 ...: return linechart(series,labels=list(col[1] for col in
 ...: columns),
 ...: ,
 ...: ylabel="Percentage Difference")
 ...: capital_gains_lift(data_file)
 ...: plt.show()
 ...:

The preceding code stores the columns as tuples of two columns-first and
second-and then uses the delta function to compute the difference between
the two. Like our previous graphs, it then creates a line chart as shown here:

This is interesting as the graph shows the volatility of the capital gains
income over time. If you are familiar with U.S. financial history, you can see
the effect on the capital gains income of the well-known stock market booms
and busts in this chart.

How it works...

The easiest way to perform operations on big datasets is to use NumPy's
array class. As we've already seen, this class allows us to perform common
operations, including basic mathematical operations between a scalar and an
array. Converting the generator to an array, however, requires us to load the
data into memory. Python's built-in list function takes an iterator and
returns a list. This is required because the NumPy array must know the length
of the data in order to allocate the correct amount of memory. With the array,
it is easy enough to calculate the mean and then perform the divide equals

scalar operation across the entire array. This broadcasts the division operation
so that each element in the array is divided by the mean. We are, in essence,
normalizing the elements of the array by their mean. We can then zip together
our years with the newly computed data and return the time series.

Furthering the analysis of the top income
groups of the US

So far in this chapter, we have focused on the analysis of income percentages
over time. Next, we will continue our analysis by taking a look at some of the
other interesting figures that we have in our dataset, specifically the actual
income figures and income categories that comprise these figures.

Getting ready

If you've completed the previous recipe, Analyzing and visualizing the top
income data of the US, you should have everything you need to continue.

How to do it...

With the following steps, we will dive deeper into the dataset and examine
additional income figures:

1. The dataset also contains the average incomes by year of the different
groups. Let's graph these and see how they have changed over time,
relative to each other:

In [32]: def average_incomes(source):
 ...: """
 ...: Compares percentage average incomes
 ...: """
 ...: columns = (
 ...: "Top 10% average income",
 ...: "Top 5% average income",
 ...: "Top 1% average income",
 ...: "Top 0.5% average income",
 ...: "Top 0.1% average income",
 ...: "Top 0.05% average income",
 ...:)
 ...: source = list(dataset(source))

 ...: return linechart([timeseries(source, col) for col in
 ...: columns], labels=columns, ,
 ...: ylabel="2008 US Dollars")
 ...: average_incomes(data_file)
 ...: plt.show()

Since we have the foundation in place to create line charts, we can
immediately analyze this new dataset with the tools we already have. We
simply choose a different collection of columns and then customize our chart
accordingly! The following is the resulting graph:

The results shown by this graph are quite fascinating. Until the 1980s, the
wealthy have been about $1-1.5 million richer than the lower income groups.
From the 1980s forward, the disparity has increased dramatically.

2. We can also use the delta functionality to see how much richer the rich
are than the average American:

In [33]: def average_top_income_lift(source):

 ...: """
 ...: Compares top percentage avg income over total avg
 ...: """
 ...: columns = (
 ...: ("Top 10% average income", "Top 0.1% average income"),
 ...: ("Top 5% average income", "Top 0.1% average income"),
 ...: ("Top 1% average income", "Top 0.1% average income"),
 ...: ("Top 0.5% average income", "Top 0.1% average income"),
 ...: ("Top 0.1% average income", "Top 0.1% average income"),
 ...:)
 ...: source = list(dataset(source))
 ...: series = [delta(timeseries(source, a), timeseries(source,
 ...: b)) for a, b in columns]
 ...: return linechart(series,labels=list(col[0] for col in columns),
 ...: ,ylabel="2008 US Dollars")
 ...:

We still haven't written new code other than the selection of our columns and
utilization of the functionality that we have already added to our project. This
reveals the following:

3. In our last analysis, we'll show off a different kind of chart to look at the
composition of the income of the wealthiest americans. Since the
composition is a percentage-based time series, a good chart for this task
is a stacked area. Once again, we can utilize our time series code and
simply add a function to create stacked area charts as follows:

In [34]: def stackedarea(series, **kwargs):
 ...: fig = plt.figure()
 ...: axe = fig.add_subplot(111)
 ...: fnx = lambda s: np.array(list(v[1] for v in s), dtype="f8")
 ...: yax = np.row_stack(fnx(s) for s in series)
 ...: xax = np.arange(1917, 2008)
 ...: polys = axe.stackplot(xax, yax)
 ...: axe.margins(0,0)
 ...: if 'ylabel' in kwargs:
 ...: axe.set_ylabel(kwargs['ylabel'])
 ...: if 'labels' in kwargs:
 ...: legendProxies = []
 ...: for poly in polys:

 ...: legendProxies.append(plt.Rectangle((0, 0), 1, 1,
 ...: fc=poly.get_facecolor()[0]))
 ...: axe.legend(legendProxies, kwargs.get('labels'))
 ...: if 'title' in kwargs:
 ...: plt.title(kwargs['title'])
 ...: return fig
 ...:

The preceding function expects a group of time series, the total percentages
of which add up to 100. We create a special, anonymous function that will
convert each series into a NumPy array. The NumPy row_stack function
creates a sequence of arrays stacked vertically; this is what will generate our
stackplot using the subplot.stackplot function. The only other surprise in
this function is the requirement to use a legend proxy to create rectangles
with the fill color from the stackplot in the legend.

4. Now, we can take a look at the income composition of the wealthiest
Americans:

In [35]: def income_composition(source):
 ...: """
 ...: Compares income composition
 ...: """
 ...: columns = (
 ...: "Top 10% income composition-Wages, salaries andpensions",
 ...: "Top 10% income composition-Dividends",
 ...: "Top 10% income composition-Interest Income",
 ...: "Top 10% income composition-Rents",
 ...: "Top 10% income composition-Entrepreneurial income",
 ...:)
 ...: source = list(dataset(source))
 ...: labels = ("Salary", "Dividends", "Interest", "Rent","Business")
 ...: return stackedarea([timeseries(source, col) for col in columns],
 ...: labels=labels, ,
 ...: ylabel="Percentage")
 ...:

The preceding code generates the following plot:

As you can see, the top 10 percent of American earners make most of their
money from a salary income; however, business income also plays a large
role. Dividends played a bigger role earlier in the century than they do
towards the end of the century, which is true for interest and rent as well.
Interestingly, for the first part of the 20th century, the percentage of income
that is related to entrepreneurial income declines, until the 1980s, when it
starts to grow again, possibly because of the technology sector.

How it works...

This recipe really helps to demonstrate the value of the application-oriented
approach. We continue to abstract out portions of code that perform singular
tasks and use them as functions. As our library of functions increases, our
analysis, often filled with repeated but slightly different tasks, becomes more
composition than creation. Even better, these individual pieces are much

easier to test and evaluate. Over time, with additional analyses, we will build
a rich and fully customized library of tools that will drastically speed up
future investigations.

This recipe also reveals how Python code can be created to construct more R-
like analyses. As we performed further evaluations, we leveraged functions
and tools that we had already built for our dataset and created new ones, such
as the stacked area function that built off our older tools. However, unlike an
analysis-oriented approach, these tools now exist in a data-specific library of
code that can be used to build applications and reports, as we'll see in the next
recipe.

Reporting with Jinja2

Visualizations and graphs are excellent for identifying obvious patterns in the
dataset. However, as trends emerge from multiple sources, more in-depth
reporting is required, as well as descriptions of the techniques used for those
not directly involved in the project. Instead of creating these reports by hand,
application-oriented analyses make use of template languages to dynamically
construct documents at the time of analysis. Jinja2 is a Python library that is
used to generate documents by combining a template-usually an HTML file,
but it can be any kind of text file-with a context, a data source that is used to
fill in the template. This combination is ideal to report on the analyses that
we're performing.

Getting ready

The Jinja2 template library should be installed and ready to use.

How to do it...

The following steps will walk us through using the Jinja2 templating library
to create flexible and appealing reporting output:

1. Jinja2 is simple and has familiar Python-esque syntax (though it is not
Python). Templates can include logic or control flow, including
iteration, conditionals, and formatting, which removes the need to have
the data adapt to the template. A simple example is as follows:

In [36]: from jinja2 import Template
 ...: template = Template(u'Greetings, {{ name }}!')
 ...: template.render(name='Mr. Praline')
Out[36]: 'Greetings, Mr. Praline!'

2. However, we should decouple our templates from our Python code, and
instead, store the templates as text files on our system. Jinja2 provides a

central Environment object, which is used to store configurations and
global objects to load templates either from the filesystem or other
Python packages:

In [37]: from jinja2 import Environment, PackageLoader, FileSystemLoader
 ...: # 'templates' should be the path to the templates folder
 ...: # as written, it is assumed to be in the current directory
 ...: jinjaenv = Environment(loader = FileSystemLoader('templates'))
 ...: template = jinjaenv.get_template('report.html')

Here, the Jinja2 environment is configured to look for template files in the
templates directory of our Python module. Another recommended loader is
FileSystemLoader, which should be provided as a search path to look for
template files. In this case, the template called report.html is fetched from
the Python module and is ready to be rendered.

Rendering can be as simple as template.render(context), which will
return a unicode string of generated output. The context should be a Python
dictionary whose keys are the variable names that will be used in the
template. Alternatively, the context can be passed in as keyword arguments;
template.render({'name':'Terry'}) is equivalent to
template.render(name='Terry'). However, for large templates (and large
datasets) it is far more efficient to use the template.stream method; it does
not render the entire template at once, but evaluates each statement
sequentially and yields it as a generator.

3. The stream can then be passed to a file-like object to be written to disk
or serialized over the network:

template.stream(items=['a', 'b', 'c'],name='Eric').dump('report-2013.html')

This seemingly simple technique is incredibly powerful, especially when
combined with the JSON module. JSON data can be dumped directly into
JavaScript snippets for interactive charting and visualization libraries on the
web, such as D3, Highcharts, and Google Charts.

4. Let's take a look at a complete example using the world's top incomes
dataset:

In [38]: import csv

 ...: import json
 ...: from datetime import datetime
 ...: from jinja2 import Environment, PackageLoader, FileSystemLoader
 ...: from itertools import groupby
 ...: from operator import itemgetter
 ...:

In [39]: def dataset(path, include):
 ...: column = 'Average income per tax unit'
 ...: with open(path, 'r') as csvfile:
 ...: reader = csv.DictReader(csvfile)
 ...: key = itemgetter('Country')
 ...: # Use groupby: memory efficient collection by country
 ...: for key, values in groupby(reader, key=key):
 ...: # Only yield countries that are included
 ...: if key in include:
 ...: yield key, [(int(value['Year']),
 ...: float(value[column]))
 ...: for value in values if value[column]]
 ...:
 ...:

In [40]: def extract_years(data):
 ...: for country in data:
 ...: for value in country[1]:
 ...: yield value[0]
 ...:
 ...: datetime.now().strftime("%Y%m%d")
 ...: jinjaenv = Environment(loader = FileSystemLoader('templates'))
 ...: template = jinjaenv.get_template('report.html')
 ...: template.stream(context).dump(path)
 ...:

In [41]: def write(context):
 ...: path = "report-%s.html" %datetime.now().strftime("%Y%m%d")
 ...: jinjaenv = Environment(loader = FileSystemLoader('templates'))
 ...: template = jinjaenv.get_template('report.html')
 template.stream(context).dump(path)
In [40]: def main(source):
 ...: # Select countries to include
 ...: include = ("United States", "France", "Italy",
 ...: "Germany", "South Africa", "New Zealand")
 ...: # Get dataset from CSV
 ...: data = list(dataset(source, include))
 ...: years = set(extract_years(data))
 ...: # Generate context
 ...: context = {

 ...: 'title': "Average Income per Family, %i - %i"
 ...: % (min(years), max(years)),
 ...: 'years': json.dumps(list(years)),
 ...: 'countries': [v[0] for v in data],
 ...: 'series': json.dumps(list(extract_series(data, years))),
 ...: }
 ...:
 ...:

In [42]: write(context)
 ...: if __name__ == '__main__':
 ...: source = '../data/income_dist.csv'
 ...: main(source)

This is a lot of code, so let's go through it step by step. The dataset function
reads our CSV file for the Average income column and filters based on a set
of included countries. It uses a functional iteration helper, groupby, which
collects the rows of our CSV file by the country field, which means that we
get a dataset per country. Both the itemgetter and groupby functions are
common, memory-safe helper functions in Python that do a lot of heavy
lifting during large-scale data analyses.

After we extract the dataset, we have two helper methods. The first,
extract_years, generates all the year values from every country. This is
necessary because not all countries have values for every year in the dataset.
We'll also use this function to determine the range of years for our template.
This brings us to the second function, extract_series, which normalizes the
data, replacing empty years with None values to ensure our time series is
correct.

The write() method wraps the template-writing functionality. It creates a file
called report-{date}.html, adding the current date for reference. It also
loads the Environment object, finds the report template, and writes the output
to disk. Finally, the main method gathers all the data and context together and
connects the functions.

5. The report template is as follows:

<html>
<head>
 <title>{{ title }}</title>

</head>
<body>
 <div class="container">
 <h1>{{ title }}</h1>
 <div id="countries">

 {% for country in countries %}
 {{ country }}
 {% endfor %}

 </div>
 <div id="chart"></div>
 </div>

 <script type="text/javascript"
 src="http://codeorigin.jquery.com/jquery-
 2.0.3.min.js"></script>
 <script src="http://code.highcharts.com/highcharts.js">
 </script>
 <script type="text/javascript">
 $.noConflict();
 jQuery(document).ready(function($) {
 $('#chart').highcharts({
 xAxis: {
 categories: JSON.parse('{{ years }}'),
 tickInterval: 5,
 },
 yAxis: {
 title: {
 text: "2008 USD"
 }
 },
 plotOptions: {
 line: {
 marker: {
 enabled: false
 }
 }
 },
 series: JSON.parse('{{ series }}')
 });
 });
 </script>
</body>
</html>

The preceding template fills in the title in the correct spot, and then creates an

unordered list of the countries included in our dataset. Additionally, it uses
Highcharts to create an interactive chart. Highcharts is an option-based,
JavaScript chart library. Note that we're using JSON.parse to parse the JSON
data that we dumped in Python. This will ensure that there are no conflicts
when converting Python datatypes to JavaScript ones. When you open up the
report in a browser, it should look something like the following screenshot:

How it works...

Performing analytics and data mining in Python parallels R closely,
especially when using the NumPy library. NumPy, like R, is designed for
scientific computing and has a similar set of functionality when dealing with
multidimensional arrays. However, as a general rule, Python takes more lines
of code, especially when creating charts with matplotlib. This is caused by
Python's generic approach to data, particularly because it is used in many
problem domains, not specifically statistical analyses, and this is also
Python's strength.

In particular, data analyses with Python tend to have an application-oriented

approach, typically involving live or streaming data that is routinely updated,
rather than analyses on a single dataset. This usually means that analyses
performed in Python leverage fast prototyping and statistical exploration with
tools such as NumPy, but then leverage an extremely inclusive standard
library to handle the data in all phases of the data pipeline.

There's more...

There are several different Python template languages, each with a different
approach to combining a predefined template with data to form human-
readable output. Many of these template languages are intended as the
backbone of web application frameworks, such as Django and Flask that are
used to construct dynamic web pages from a database. Since these languages
are well suited to generate HTML, reporting with these tools creates an easy
transition, from one-off reporting to scheduled reporting, to on-demand
reporting from a web application. Jinja2 is the primary template language for
Flask and has a Django-like syntax, making it an excellent choice for future
implementations.

See also

For the data source, go to http://topincomes.g-
mond.parisschoolofeconomics.eu/
The Templating in Python article at
https://wiki.python.org/moin/Templating
The What is Data Science? article at
http://radar.oreilly.com/2010/06/what-is-data-science.html
The Setting up Python and Matplotlib in OSX Mountain Lion article at
http://www.tapir.caltech.edu/~dtsang/python.html

http://topincomes.g-mond.parisschoolofeconomics.eu/
https://wiki.python.org/moin/Templating
http://radar.oreilly.com/2010/06/what-is-data-science.html
http://www.tapir.caltech.edu/~dtsang/python.html

Repeating the analysis in R

This brief survey session is intended to replicate most of the data analysis
discussed in the preceding section using the R software. The section is self-
contained in the sense that there is no dependency on any R package.

Getting ready

The functions available in the R default version suffice to perform the
analysis done earlier in the chapter. The income_dist.csv file needs to be
present in the current working directory.

How to do it...

A step-by-step approach to perform the analysis related to the
income_dist.csv file can be easily carried out as shown in the next program.

1. Load the dataset income_dist.csv using the read.csv function and use
the functions nrow, str, length, unique, and so on to get the following
results:

id <- read.csv("income_dist.csv",header=TRUE)
nrow(id)
str(names(id))
length(names(id))
ncol(id) # equivalent of previous line
unique(id$Country)
levels(id$Country) # alternatively
min(id$Year)
max(id$Year)
id_us <- id[id$Country=="United States",]

The data is first stored in the R object ID. We see that there are 2180
observations/rows in the dataset. The dataset has 354 variables and a few are
seen with the use of two functions, str and names. The number of variables is

also verified using the ncol and length functions. The data related to United
States is selected through the code id[id$Country=="United States",].
Now, we first use the plot function to get a first view of the average income
tax, which is a poor plot.

2. Using the plot function, we obtain a simple display as follows:

plot(id_us$Year , id_us$Average.income.per.tax.unit) 0

The output is not given here as we intend to improvise it. Instead of a plot,
we now use the barplot function.

3. An elegant display is obtained using the barplot function along with a
suitable choice of labels:

barplot(id_us$Average.income.per.tax.unit,ylim=c(0,60000),

 ylab="Income in USD",col="blue",main="U.S. Average Income 1913-2008",
 names.arg=id_us$Year)

It is always a good practice to use options of a graphical function. For
instance, we specified the range of the y-variable through ylim, the y-axis
label through ylab, and a caption for the graph through main.

For further analyses, we continue to focus on the United States region only:

1. The analysis for the top income data of the US, as in the earlier recipe,
Analyzing and visualizing the top income data of the US, is reproduced
in R in the following program. After subsetting on the US region, we
select the specific variables of 10%, 5%, 1%, 0.5%, and 0.1% using the
subsetting as in [. The new R object is id2_us2:

id2 <- read.csv("income_dist.csv",header=TRUE,check.names = F)
using the check.names=F option to ensure special characters in colnames
id2_us <- id2[id$Country=="United States",]
id2_us2 <- id2_us[,c("Top 10% income share",
 "Top 5% income share",
 "Top 1% income share",
 "Top 0.5% income share",
 "Top 0.1% income share")]
row.names(id2_us2) <- id2_us$Year

2. The R object id2_us2 is converted into a time series object with the ts
function. Now, for this specific choice of the data, we visualize it year-
on-year with the next chunk of R code:

id2_us2 <- ts(id2_us2,start=1913,frequency = 1)
windows(height=20,width=10)
plot.ts(id2_us2,plot.type="single",ylab="Percentage",frame.plot=TRUE,
 col=c("blue","green","red","blueviolet","purple"))
legend(x=c(1960,1980),y=c(45,30),c("Top 10%","Top 5%","Top 1%","Top 0.5%","Top 0.1%"),
 col = c("blue","green","red","blueviolet","purple"),pch="-")

Note that the object id2_us2 has five time series objects. We plot all of them
in a single frame using the option plot.type="single". Legends and colors
are used to enhance the aesthetics of the graphical display. The resulting
graphical output is given as follows:

3. The preceding exercise is repeated with scaled data:

id2_scale <- scale(id2_us2)
windows(height=20,width=10)
plot.ts(id2_scale,plot.type="single",ylab="Percentage",frame.plot=TRUE,
 col=c("blue","green","red","blueviolet","purple"))
legend(x=c(1960,1980),y=c(2,1),c("Top 10%","Top 5%","Top 1%","Top 0.5%","Top 0.1%"), col = c("blue","green","red","blueviolet","purple"),pch="-")

The output is as follows:

4. Note that this display makes the comparison between the five time series
easier.

5. To replicate the Python analyses in the Furthering the analysis of the top
income groups of the US, recipe in R, we give the R code and output in
the final chunk of the code:

id2_us3 <- id2_us[,c("Top 10% income share-including capital gains",
 "Top 10% income share",
 "Top 5% income share-including capital gains",
 "Top 5% income share",
 "Top 1% income share-including capital gains",
 "Top 1% income share",
 "Top 0.5% income share-including capital gains",
 "Top 0.5% income share",
 "Top 0.1% income share-including capital gains",
 "Top 0.1% income share",
 "Top 0.05% income share-including capital gains",
 "Top 0.05% income share")
]
id2_us3[,"Top 10% capital gains"] <- id2_us3[,1]-id2_us3[,2]
id2_us3[,"Top 5% capital gains"] <- id2_us3[,3]-id2_us3[,4]
id2_us3[,"Top 1% capital gains"] <- id2_us3[,5]-id2_us3[,6]
id2_us3[,"Top 0.5% capital gains"] <- id2_us3[,7]-id2_us3[,8]
id2_us3[,"Top 0.1% capital gains"] <- id2_us3[,9]-id2_us3[,10]
id2_us3[,"Top 0.05% capital gains"] <- id2_us3[,11]-id2_us3[,12]
id2_us3 <- ts(id2_us3,start=1913,frequency = 1)
windows(height=20,width=10)
plot.ts(id2_us3[,13:18],plot.type="single",ylab="Percentage",frame.plot=TRUE,
 col=c("blue","green","red","blueviolet","purple","yellow"))
legend(x=c(1960,1980),y=c(7,5),c("Top 10%","Top 5%","Top 1%","Top 0.5%",
 "Top 0.1%","Top 0.05%"),
 col = c("blue","green","red","blueviolet","purple","yellow"),pch="-")

The graphical output is given as follows:

There's more...

R and Python are two of the most competing, compelling, and complete
software. In most cases, it is possible to replicate the Python analysis in R,
and vice versa. It goes without saying that it would not be possible to get
exact answers of one software in another. However, that is not the purpose of
this recipe.

Chapter 4. Modeling Stock Market Data
In this chapter, we will cover:

Acquiring stock market data
Summarizing the data
Cleaning and exploring the data
Generating relative valuations
Screening stocks and analyzing historical prices

Introduction

This chapter will walk you through a financial analysis project where you
will analyze stock market data, determine whether stocks are over or under-
valued, use this information to identify a list of target stocks that may make
good investments, and visually analyze the price histories of the target stocks.

We must caution that the goal of this chapter is not to make you an expert in
stock market analysis or to make you rich. Quants on Wall Street study
engineering models that perform significantly more sophisticated operations
than those we will touch upon here. Entire books have been written on stock
market models and financial engineering, but we only have a single chapter
to dedicate to this topic. So given the time and format constraints, the goals
of this chapter will be:

To get a basic understanding of the data that we will work with
To find useful and interesting ways to analyze and model this data
To learn how to leverage data science tools and techniques to perform
the types of analytical tasks that we need to perform on the data

The data we will use for this chapter consists of current data for stocks
tracked by the website finviz.com and daily histories of stock prices obtained
from Yahoo! Finance.

As in previous chapters, the tool we will rely on for this project will be the R
statistical programming language. As you've probably noticed by now, R has
strong packages available that can assist us in the needed analytical tasks; we
will be leveraging some of these packages in this chapter. Additionally, the
recipes in this chapter will roughly follow the data science pipeline, which we
will adapt to the type of data we are working with and the types of analysis
we would like to conduct on the data.

Requirements

http://Finviz.com

For this chapter, you will need a computer with access to the internet. You
will also need to have R installed and the following packages installed and
then loaded:

install.packages("XML")
install.packages("ggplot2")
install.packages("plyr")
install.packages("reshape2")
install.packages("zoo")

library(XML)
library(ggplot2 ,quietly=TRUE)
library(plyr ,quietly=TRUE)
library(reshape2 ,quietly=TRUE)
library(zoo ,quietly=TRUE)

The XML package will assist us with acquiring data from the internet, ggplot2
will let us create beautiful graphs and visualizations from our data, plyr and
reshape2 will help us with summarizing our data, and the zoo package will
allow us to calculate moving averages.

You will also want to set a working directory where some of the charts that
we generate will be saved:

setwd("path/where/you/want/to save/charts")

Acquiring stock market data

If you look on the internet for stock market data, you will quickly find
yourself inundated with sources providing stock quotes and financial data. An
important and often overlooked factor when acquiring data is the efficiency
of getting the data. All else being equal, you don't want to spend hours
piecing together a dataset that you could have acquired in far less time.
Taking this into consideration, we will try to obtain the largest amount of
data from the least number of sources. This not only helps to keep the data as
consistent as possible, but it also improves the repeatability of the analysis
and the reproducibility of the results.

How to do it...

The first piece of data we want to obtain is a snapshot of the stocks we want
to analyze. One of the best ways to do this is to download data from one of
the many stock screener applications that exist. Our favorite screener to
download stock data from belongs to http://finviz.com.

Let's acquire the stock market data that we will use for this chapter with the
help of the following steps:

1. First, let's pull up finviz stock screener available at
http://finviz.com/screener.ashx:

http://finviz.com
http://finviz.com/screener.ashx

Note

As you can see, the site has multiple fields that can be filtered. If
you click on the All tab, you can see all of the fields that can be
displayed.

2. For this project, we want to export all the fields for all the companies in
the screener. You can either customize the screener by checking 69
check-boxes, at the time of writing, or you can use the following URL to
make all the fields show up automatically:

http://finviz.com/screener.ashx?v=152&c=
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68

You should now see the screener with all the available fields.

3. If you scroll all the way to the bottom right of the screen, there should
be an export link. Click on this link and save the CSV file as
finviz.csv.

4. Finally, we will launch RStudio, read the finviz.csv file from the path
where we saved it, and assign it to a data frame, as follows:

finviz <- read.csv("path/finviz.csv")

http://finviz.com/screener.ashx?v=152&c=%200,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68

Note

In data analysis, it is always better for each step that is performed
to be in code instead of as a series of point-and-click actions that
require human intervention. This way, it is much easier and faster
to reproduce your results.

5. After going through steps 1 to 4 for the first time (and some clever
reading of URLs from our browser), we can replace the previous lines of
code with the following two commands:

url_to_open <-
 'http://finviz.com/export.ashx?v=152&c=0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
 ,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,5
 2,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68'

finviz <- read.csv(url(url_to_open))

Note

Note the structure of the URL in step 2; it contains a comma-
separated list of the check-boxes we wish to select. You can
programmatically generate this URL to easily select whichever
combination of companies' data you want to download. If you
want to avoid typing the numbers 0 through 68, you can use a
combination of the sprintf and paste commands to accomplish
the same thing:url_to_open <-
sprintf("http://finviz.com/export.ashx?v=152&c=%s",
paste(0:68, collapse = ","))

Summarizing the data

Now that we have acquired our stock data, let's use a couple of commands to
find out what fields our data contains and get some useful information about
the values contained in these fields.

Getting ready

You will need the data downloaded from the previous recipe, Acquiring stock
market data, to begin the summary.

How to do it...

The following steps will walk you through a quick summary of the data:

1. Take a look at the fields you imported using the following command:

> head(finviz[,1:4])

This command will show you the first six rows of your data, as shown in the
following snippet, so that you can see what fields are in your data and also
examples of possible values for the fields. In this example, we can also see
that there is some missing data, identified by NA:

 No. Ticker Company Sector
1 1 A Agilent Technologies Inc. Healthcare
2 2 AA Alcoa, Inc. Basic Materials
3 3 AADR WCM/BNY Mellon Focused Growth ADR ETF Financial
4 4 AAIT iShares MSCI AC Asia Information Tech Financial
5 5 AAL American Airlines Group Inc. Services
6 6 AAMC Altisource Asset Management Corporation Financial

2. The next command will return a summary of each field. For numeric
fields, it will tell you what the min, max, mean, median, and quartiles
are, and for character fields, it will tell you which appear most often:

How it works...

Now that we've taken an initial glance at the data, it's important to take some
time out to identify the fields that will be most important to us, and
understand what these fields mean.

The first few fields contain identifying information about the company.

The ticker (sometimes also called the symbol) is the identifier for the stock of
a company. No two companies will have the exact same ticker symbol. So AA
is always Alcoa, AAPL is always Apple, and so forth.

Next, we have the company name, sector, industry, and home country of the
company. The sector and industry details serve as ways to classify stocks to
inform us of each company's primary line of business; sector is more general
(higher level), and industry is more specific (lower level). For example,
Apple Inc. (AAPL) is in the Consumer Goods sector and primarily produces
consumer goods in the Electronic Equipment industry.

There's more...

Once we get past these fields, most of the other fields in our dataset are
numeric. Let's define some of the most important ones:

Price: This indicates the ongoing dollar value to purchase one share of a
company's stock.
Volume: This indicates the most recent number of shares of the stock
transacted in a day.
Shares Outstanding: This is the total number of stock shares the
company has issued.

P/E: The Price to Earnings ratio is the price of the company's stock
divided by the company's earnings per share outstanding.
PEG: The P/E Growth ratio is the company's P/E ratio divided by its
annual growth rate, and it gives you a sense of the valuation of the
company's earnings relative to its growth.
EPS growth next year: This is the expected rate at which the
company's earnings per share will grow in the next year.
Total Debt/Equity: The total debt to equity is used as a measure of
financial health calculated by dividing the dollar value of the company's
total debt with the equity in the company. This gives you a sense of how
the company has been financing its growth and operations. Debt is more
risky than equity, so a high ratio will be cause for concern.
Beta: This is a measure of the stock's volatility (swings in its price)
relative to the overall stock market. A beta of 1 means the stock is as
volatile as the market. A beta more than 1 means it's more volatile, while
a beta less than 1 means it's less volatile.
RSI: The Relative Strength Index is a metric based on stock price
activity, which uses the number of days a stock has closed higher than
its opening price and the number of days a stock has closed lower than
its opening price within the last two weeks to determine a score between
0 and 100. A higher index value indicates that the stock might be
overvalued, and therefore, the price might drop soon; a lower value
indicates that the stock might be undervalued, so the price might rise
soon.

If you want to know the definitions of some of the other fields,
http://investopedia.com is a great place to find definitions of financial and
investment terms.

http://investopedia.com

Cleaning and exploring the data

Now that we've acquired the data and learned a little about what the fields
mean, the next step is to clean up the data and conduct some exploratory
analysis.

Getting ready

Make sure you have the packages mentioned at the beginning of this chapter
under the Requirements section installed and you have successfully imported
the FINVIZ data into R using the steps in the previous sections.

How to do it...

To clean and explore the data, closely follow the ensuing instructions:

1. Imported numeric data often contains special characters such as
percentage signs, dollar signs, commas, and so on. This causes R to
think that the field is a character field instead of a numeric field. For
example, our FINVIZ dataset contains numerous values with percentage
signs that must be removed. To do this, we will create a clean_numeric
function that will strip away any unwanted characters using the gsub
command. We will create this function once and then use it multiple
times throughout the chapter:

clean_numeric <- function(s){
 s <- gsub("%|\\$|,|\\)|\\(", "", s)
 s <- as.numeric(s)
}

2. Next, we will apply this function to the numeric fields in our finviz
data frame:

finviz <- cbind(finviz[,1:6],apply(finviz[,7:68], 2, clean_numeric))

3. If you look at the data again, all the pesky percentage signs will be gone,
and the fields will all be numeric.

Note

In this command, and throughout the rest of this chapter, there
will be many instances where we reference columns by their
column number. If the number of columns changes for some
reason, the numbers referenced will need to be adjusted
accordingly.

4. Now we are ready to really start exploring our data! The first thing to do
is take a look at how the prices are distributed in order to get a visual
sense of what is a high stock price, what is a low stock price, and where
the prices of most stocks fall:

hist(finviz$Price, breaks=100, main="Price Distribution", xlab="Price")

You will get the following graph as output:

Here, we encounter our first problem. Outlier stocks with a very high price
causes R to scale the x axis of the histogram in such a way as to make the
graph useless. We simply cannot see what the distribution for the more

normally priced stocks looks like. This is a very common issue when
producing a histogram.

5. Let's put a cap on the x axis of $150 and see what that produces for us:

hist(finviz$Price[finviz$Price<150], breaks=100, main=
"Price Distribution", xlab="Price")

You will get the following graph as output:

This is much better! It shows that the majority of stocks in our dataset are
priced under $50. So, in absolute terms, a stock that was priced at $100
would be considered expensive.

6. But of course things aren't so simple. Perhaps different sectors and
industries have different price levels. So, theoretically a $100 stock
might be cheap if all the other stocks in its industry are priced in the
$120 to $150 range. Let's get the average prices by sector and see how
they compare. Note that we are not excluding any stocks:

sector_avg_prices <- aggregate(Price~Sector,data=finviz,FUN="mean")
colnames(sector_avg_prices)[2] <- "Sector_Avg_Price"
ggplot(sector_avg_prices, aes(x=Sector, y=Sector_Avg_Price,
fill=Sector)) + geom_bar(stat="identity") + ggtitle("Sector Avg Prices") +

You will get the following graph as output:

This is interesting. Stocks in the financial sector seem to have a significantly
higher average price than stocks in other sectors. I'm willing to bet that this is
due to some of the outliers that messed up our distribution earlier.

7. Let's get to the bottom of this! Let's find out which industries and
companies are responsible for making the average price of the financial
sector so much higher than all the others.

First, we create a summary of the average prices by industry:

industry_avg_prices <- aggregate(Price~Sector+Industry,data=finviz,FUN="mean")
industry_avg_prices <- industry_avg_prices[order(industry_avg_prices$Sector,industry_avg_prices$Industry),]
colnames(industry_avg_prices)[3] <- "Industry_Avg_Price"

Then, we isolate the industries in the financial sector:

industry_chart <- subset(industry_avg_prices,Sector=="Financial")

Finally, we create a chart showing the average price of each industry in the
financial sector:

ggplot(industry_chart, aes(x=Industry, y=Industry_Avg_Price,
fill=Industry)) + geom_bar(stat="identity") + theme(legend.position="none") +

You will get the following graph as output:

From this graph, it looks like the Property & Casualty Insurance industry
is the main culprit that is driving the average prices up.

8. Next, we will drill down further into the Property & Casualty
Insurance industry to identify which companies are the outliers:

company_chart <- subset(finviz,Industry=="Property & Casualty Insurance")

ggplot(company_chart, aes(x=Company, y=Price, fill=Company)) +
 geom_bar(stat="identity") + theme(legend.position="none") +
 ggtitle("Company Avg Prices") +
 theme(axis.text.x = element_text(angle = 90, hjust = 1))

You will get the following graph as output:

It's hard to see because there are so many companies, but if you zoom in on
the graph, it is clear that the outlier company is Berkshire Hathaway, where
the stock price is currently over $172,000 per share.

9. Since their stock price is so extreme, let's remove them from our dataset
and then re-average the sectors so that we have a more realistic average
price for the financial sector:

finviz <- subset(finviz, Ticker!="BRK-A")
sector_avg_prices <- aggregate(Price~Sector,data=finviz,FUN="mean")
colnames(sector_avg_prices)[2] <- "Sector_Avg_Price"
ggplot(sector_avg_prices, aes(x=Sector, y=Sector_Avg_Price,
fill=Sector)) + geom_bar(stat="identity") + ggtitle("Sector Avg Prices") +

You will get the following graph as output:

Now our averages look much better and we have a decent basis to compare
stock prices to their industry and sector averages.

How it works...

In this section, we used the aggregate command to summarize our data.
Here's a reminder of the code we used:

sector_avg_prices <- aggregate(Price~Sector,data=finviz,FUN="mean")

An alternative way to do this is with the ddply command that is part of the
plyr package:

sector_avg_prices <- ddply(finviz, "Sector", summarise,
 Price=mean(Price, na.rm=TRUE))

Wherever you see the aggregate command used in this chapter, feel free to
challenge yourself by also trying to summarize the data, using the ddply
command.

See also

The gsub command at http://stat.ethz.ch/R-manual/R-

http://stat.ethz.ch/R-manual/R-devel/library/base/html/grep.html

devel/library/base/html/grep.html
The cbind command at http://stat.ethz.ch/R-manual/R-
devel/library/base/html/cbind.html
The plyr documentation at http://cran.r-
project.org/web/packages/plyr/plyr.pdf
The aggregate command at http://stat.ethz.ch/R-manual/R-
devel/library/stats/html/aggregate.html

http://stat.ethz.ch/R-manual/R-devel/library/base/html/cbind.html%20
http://cran.r-project.org/web/packages/plyr/plyr.pdf
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/aggregate.html

Generating relative valuations

One of the most interesting things that you can do with stock market data is
come up with a valuation model. The ultimate goal is to arrive at a decision
about whether the stock might be overvalued or undervalued. There are two
main ways to do this. Intrinsic valuation is generally more time consuming
because it involves digging into the financial statements of a company to
arrive at a valuation decision. The alternative method is relative valuation
which will quickly provide a sense of how the stock is valued, but does not
take into account a comprehensive set of factors. The basic idea is that it
compares a stock's price and valuation ratios to similar stocks to arrive at a
conclusion. In this section, we will value stocks using the simpler relative
valuation method.

Getting ready

This recipe requires the data downloaded and cleaned in the previous recipes.

How to do

We will essentially do three major things in this section. First, we calculate
sector averages for fields that we can use in our relative valuation efforts.
Then, we do the same at the industry level. Finally, we compare the stocks'
statistics to the averages to arrive at an index value for each stock that
indicates whether it might be undervalued. The following steps will guide
you:

1. In order to calculate averages in multiple columns in R, we first need to
melt the data. This will make every column after Sector a row and then
display its value, essentially making the data long instead of wide. Take
a look at the following screenshot for the different steps in this recipe to
better understand how the data changes shape. It goes from being wide
to long, and then back to wide again, but in summary form:

We will use the following command to perform this action:

sector_avg <- melt(finviz, id="Sector")

2. Next, we need to filter so that the data frame contains only the fields we
want to average:

sector_avg <- subset(sector_avg,variable %in% c("Price","P.E","PEG","P.S", "P.B"))

Now your sector_avg data frame should look like this:

Each column heading (variable) is now listed vertically alongside its value.
This allows us to do some grouping later to get the averages for each
variable.

3. Not all stocks in our original dataset had all of these values; where the
values were null, we wanted to remove the records. We also wanted to
make sure all of our values are numeric:

sector_avg <- (na.omit(sector_avg))
sector_avg$value <- as.numeric(sector_avg$value)

4. The next step is to cast the data to make it wide again. This will produce
a column for each of the fields we filtered, and will now contain the
average by sector. We will also rename the columns so that we know
they are sector averages:

sector_avg <- dcast(sector_avg, Sector~variable, mean)
colnames(sector_avg)[2:6] <- c("SAvgPE","SAvgPEG","SAvgPS","SAvgPB", "SAvgPrice")

You will get the following plot as output:

5. We will now do the exact same thing at the industry level:

industry_avg <- melt(finviz, id=c("Sector","Industry"))
industry_avg <- subset(industry_avg,variable %in% c("Price","P.E","PEG","P.S","P.B"))
industry_avg <- (na.omit(industry_avg))
industry_avg$value <- as.numeric(industry_avg$value)
industry_avg <- dcast(industry_avg, Sector+Industry~variable, mean)
industry_avg <- (na.omit(industry_avg))
colnames(industry_avg)[3:7] <-
 c("IAvgPE","IAvgPEG","IAvgPS","IAvgPB","IAvgPrice")

6. We will now add the sector and industry average columns to our
originalfinviz dataset:

finviz <- merge(finviz, sector_avg, by.x="Sector", by.y="Sector")
finviz <- merge(finviz, industry_avg, by.x=c("Sector","Industry"), by.y=c("Sector","Industry"))

You might have noticed that the number of records in the finviz data frame
decreased when we executed the last line of code. It removed all stock that
didn't have an industry average from the dataset. This is fine since the overall
goal is to narrow down the list of stocks, and we wouldn't have had sufficient
information to generate a valuation for these stocks anyway.

7. Now it's time to put these new fields to use. First, we will add 10
placeholder fields that contain all 0. These will be used to track whether
a stock is undervalued, based on being lower than the sector or industry
average:

finviz$SPEUnder <- 0
finviz$SPEGUnder <- 0
finviz$SPSUnder <- 0

finviz$SPBUnder <- 0
finviz$SPriceUnder <- 0
finviz$IPEUnder <- 0
finviz$IPEGUnder <- 0
finviz$IPSUnder <- 0
finviz$IPBUnder <- 0
finviz$IPriceUnder <- 0

8. Next, we will replace the 0s with 1s wherever the respective value for
the stock is less than the average to indicate that these stocks might be
undervalued based on that metric:

finviz$SPEUnder[finviz$P.E<finviz$SAvgPE] <- 1
finviz$SPEGUnder[finviz$PEG<finviz$SAvgPEG] <- 1
finviz$SPSUnder[finviz$P.S<finviz$SAvgPS] <- 1
finviz$SPBUnder[finviz$P.B<finviz$SAvgPB] <- 1
finviz$SPriceUnder[finviz$Price<finviz$SAvgPrice] <- 1
finviz$IPEUnder[finviz$P.E<finviz$IAvgPE] <- 1
finviz$IPEGUnder[finviz$PEG<finviz$IAvgPEG] <- 1
finviz$IPSUnder[finviz$P.S<finviz$IAvgPS] <- 1
finviz$IPBUnder[finviz$P.B<finviz$IAvgPB] <- 1
finviz$IPriceUnder[finviz$Price<finviz$IAvgPrice] <- 1

9. Finally, we will sum these 10 columns to create a new column with the
index value telling you, on a scale of 1 to 10, how undervalued the stock
is based on the different dimensions that were considered:

finviz$RelValIndex <- apply(finviz[79:88],1,sum)

How it works...

Relative valuation involves comparing a stock's statistics with that of similar
stocks in order to determine whether the stock is overvalued or undervalued.
In an overly simplified example, a stock with a lower P/E ratio relative to the
industry average P/E ratio for their industry (all else being equal) can be
considered undervalued and might make a decent investment if the company
has good financial health. Once we have this, we can filter for the stocks that
look most promising, such as ones that have a RelValIndex of 8 or greater.Â

potentially_undervalued <- subset(finviz,RelValIndex>=8)

The potentially_undervalued data frame we just created should look
this:Â

We admit that this is an overly simplistic approach. However, it provides a
framework to expand into more complex calculations. For example, once
comfortable with this process, you can:

Add in customized criteria to assign a 1 to indicate that the stock is
undervalued
Weigh the values differently
Add or remove criteria
Create more precise index values than just 1s and 0s, and so on

The sky is the limit here, but the process is the same.

Screening stocks and analyzing historical
prices

When we are looking for stocks to invest in, we need to have a way to narrow
the list down. In other words, we need to eliminate stocks that we don't think
will be good investments. The definition of a good investment varies from
person to person, but in this section, we will use some basic criteria to reduce
our master list of stocks to just a few that we think might make good
prospects. Once comfortable with the process, we encourage you to modify
the criteria based on your own opinion of what defines a stock worth
investing in. Once we have our prospects, we will analyze their historical
prices and see what conclusions we can draw from them.

Getting ready

We will start with the finviz dataset as it was at the end of the previous
section, along with the sector and industry averages columns, the binary
undervalued columns, and the index values that summed up the values in the
binary columns.

In addition to the packages we have used so far in this chapter, we will also
need the zoo package for this section. This will help us calculate moving
averages for the historical stock prices that we will pull.

How to do it...

The steps that you are about to embark upon will allow you to screen stocks:

1. First, choose some stock screening criteria, that is, a way to select the
stocks within the finviz dataset that we feel have the potential to be
good investments. Here is some sample criteria to start with:

Only US companies

Price per share between $20 and $100
Volume greater than 10,000
Positive earnings per share currently and projected for the future
Total debt to equity ratio less than 1
Beta less than 1.5
Institutional ownership less than 30 percent
Relative valuation index value greater than 8

2. As mentioned, these are just examples. Feel free to remove criteria, add
criteria, or make changes based on what you think will give you the best
output. The goal is to narrow the list down to less than 10 stocks.

3. Next, we apply our criteria to subset the finviz data frame into a new
data frame called target_stocks:

target_stocks <- subset(finviz, Price>20 & Price<100 & Volume>10000 &
 Country=="USA" &
 EPS..ttm.>0 &
 EPS.growth.next.year>0 &
 EPS.growth.next.5.years>0 &
 Total.Debt.Equity<1 & Beta<1.5 &
 Institutional.Ownership<30 &
 RelValIndex>8)

At the time of writing, this produces a target list of six stocks, as shown in the
following screenshot. You might get a different number or different stocks
altogether if you pull updated data from the web:

4. Now, let's go out and get historical prices for our target list of stocks so

that we can see how their prices have changed over time. We will use a
for loop to iterate through the list of symbols and pull prices for each
one, but we will break up the loop across several steps and explain what
each chunk is doing:

counter <- 0
for (symbol in target_stocks$Ticker){

The preceding command initializes a counter to keep track of where we are in
our list of target stocks. Immediately after, we begin the for loop by telling
every symbol in our target list to do the following:

url <- paste0("http://ichart.finance.yahoo.com/table.csv?s=",symbol,
"&a=08&b=7&c=1984&d=01&e=23&f=2014&g=d&ignore=.csv")
stock <- read.csv(url)
stock <- na.omit(stock)
colnames(stock)[7] <- "AdjClose"
stock[,1] <- as.Date(stock[,1])
stock <- cbind(Symbol=symbol,stock)

This code assigns a URL to the URL variable that has the current stock
symbol embedded into it. Then, we read the data located at this URL and
assign it to a data frame called stock. We then do some clean up and
formatting by removing all null values from the data frame, renaming the last
column, making sure the Date column is formatted as a date that R can
recognize, and adding the stock's symbol to the first row of the data frame.

5. The next few lines of our for loop will calculate some moving averages
so that we can compare them with the daily stock prices. For this step,
make sure you have the zoo package mentioned at the beginning of this
section installed and loaded.

The first part will calculate both a 50-day moving average and a 200-day
moving average:

maxrow <- nrow(stock)-49
ma50 <- cbind(stock[1:maxrow,1:2],rollmean(stock$AdjClose, 50,align="right"))
maxrow <- nrow(stock)-199
ma200 <- cbind(stock[1:maxrow,1:2],rollmean(stock$AdjClose,200,align="right"))

The second part will combine the moving average data frames with the data

frame containing the historical stock prices so that everything is part of the
same dataset:

stock <- merge(stock,ma50,by.x=c("Symbol","Date"),by.y=c("Symbol",
 "Date"), all.x=TRUE)
colnames(stock)[9] <- "MovAvg50"
stock <- merge(stock,ma200,by.x=c("Symbol","Date"),by.y=c("Symbol", "Date"),all.x=TRUE)
colnames(stock)[10] <- "MovAvg200"

6. Next, we will plot a historical chart for each stock that our for loop
iterates through, and then save that plot:

price_chart <- melt(stock[,c(1,2,8,9,10)],id=c("Symbol","Date"))
qplot(Date, value, data=price_chart, geom="line", color=variable, main=paste(symbol,"Daily Stock Prices"),ylab="Price")
ggsave(filename=paste0("stock_price_",counter,".png"))

The charts that get generated and saved should look like the following two
charts:

The next part of our loop summarizes the opening, high, low, and closing
prices of the current stock:

price_summary <- ddply(stock, "Symbol", summarise, open=Open[nrow(stock)],

Then, it accumulates the summarized opening, high, low, and closing prices
in a data frame called stocks so that the different stocks can be compared
later. Also, it separately accumulates all the daily historical prices for the
stocks in a data frame called price summaries so that they can be compared as
well:

if(counter==0){
 stocks <- rbind(stock)
 price_summaries <- rbind(price_summary)
 }else{
 stocks <- rbind(stocks, stock)
 price_summaries <- rbind(price_summaries, price_summary)
 }

At the end of the loop, we increment our counter by one, and then close our
for loop with a curly bracket:

counter <- counter+1
}

Note

We broke our loop into pieces in order to explain what each part
of the loop does. If you want to see what the entire for loop
should look like, check the accompanying code file for this
chapter.

The complete code block is given here as an image:

Once we have iterated through all the stock symbols, we are left with a data
frame named stocks that contains the historical prices for all the symbols in
our target list and a data frame named price_summaries that holds the
summaries for all our stocks. Let's graph them and see what they look like.

7. First, we will graph the historical prices for all our stocks:

qplot(Date, AdjClose, data=stocks, geom="line", color=Symbol, main="Daily Stock Prices")
ggsave(filename=("stock_price_combined.png"))

The preceding commands will produce the following graph:

8. Then, let's visualize the price summaries:

summary <- melt(price_summaries,id="Symbol")
ggplot(summary, aes(x=variable, y=value, fill=Symbol)) + geom_bar(stat="identity") + facet_wrap(~Symbol)
ggsave(filename=("stock_price_summaries.png"))

The resulting graph should look similar to this:

How it works...

Daily stock price charts are very spiky or volatile, and this sometimes makes
them difficult to read. Moving averages smooth out the price fluctuations of a
stock so that you can get a better sense of whether the stock is moving up or
down over time.

Moving averages are also used to time investment in stocks. In other words,
they are used as a guide to determine whether to invest in a stock now or to
wait. There are varying opinions about what signals the best time, but one
example is when the stock's 50-day moving average is below its 200-day
moving average but is trending up. For more on moving averages, please see
http://www.investopedia.com/university/movingaverage/.

The combined historical price chart we generated in this section shows us the
degree to which our target stocks' prices move in tandem. If you are looking
to invest in multiple stocks, it can be good to invest in ones where the prices
are not too highly correlated. You can also visualize how volatile one stock
has been when compared to another. In our graph, you can see that the

http://www.investopedia.com/university/movingaverage/

symbols WPZ and NRCIB have been fairly volatile, while the other symbols
have been somewhat less volatile.

Another way to look at the price comparisons is by examining the price
summaries bar chart that we created. This chart shows the opening, high, low,
and closing prices for the period analyzed. The opening price is the very first
price the stock traded at, the closing price is the very last price the stock has
traded at thus far, the high price is the highest price the stock has been at
during the period, and the low price is the lowest price the stock has been at
during the period. The volatility mentioned previously can be viewed in a
different way on this graph, as you can clearly see the difference between the
highs and the lows of our two most volatile stocks. This chart also lets you
see where the stock's closing price is relative to its all-time high and all-time
low, which might help to give you a clue of the fairness of its current
valuation.

Chapter 5. Visually Exploring Employment
Data
In this chapter, we will cover:

Preparing for analysis
Importing employment data into R
Exploring the employment data
Obtaining and merging additional data
Adding geographical information
Extracting state- and county-level wage and employment information
Visualizing geographical distributions of pay
Exploring where the jobs are, by industry
Animating maps for a geospatial time series
Benchmarking performance for some common tasks

Introduction

This project will introduce you to the US employment data provided by the
Bureau of Labor Statistics (BLS) of the United States government. The
BLS is the federal agency responsible for measuring labor market activity
and working conditions and prices in the US economy. Its mission is the
collection, analysis, and dissemination of essential economic information to
support public and private decision-making. In this project, we will use the
aggregated annual data on employment and pay, stratified by geography and
industry, from 2012, derived from the Quarterly Census of Employment
and Wages (QCEW).

This data can be downloaded as a compressed comma-separated value
(CSV) file at
http://www.bls.gov/cew/data/files/2012/csv/2012_annual_singlefile.zip,
which contains the single file 2012.annual.singlefile.csv. This file has 15
columns and about 3.5 million rows.

The QCEW is a quarterly collection of data, via the corporate tax collection
system, related to employment and wages reported by employers. This census
covers about 98 percent of the US civilian jobs, and excludes proprietors,
unincorporated self-employed, unpaid family members, and some farm and
domestic workers. The data is available as the aggregate data by county,
metropolitan area (MSA), state, and national levels by industry. This
government program has been in place since the 1930s in some form, and the
current form has been in existence since 2003. The data is based on corporate
reports to federal and local governments that are required by law, so it should
be relatively free of reporting bias. This data gives a snapshot, in aggregate,
of the wages and employment levels in the country by geography and
industry.

The basic questions that we will address in this chapter are the geographical
distribution of pay and employment in the US in 2012 and the last available
full year of data at the time of writing. We will look at state and county levels

http://www.bls.gov/cew/data/files/2012/csv/2012_annual_singlefile.zip

as well as drill down to a few industries. We will also look at the temporal
change in the geographical distribution of pay for the period 2003-2012 and
what this reveals about the changing employment landscape in the US.

The goal of this chapter is to guide you through the data science pipeline
using a step-by-step example, which, in this case, is the exploration of
government employment data freely available at the US Government's BLS.
We will work through ingesting the data into R, transforming and
manipulating the data, creating subsets of the data, and generating
visualizations that might provide some insight about patterns in the data. We
hope that this example will serve as another exemplar that you can transfer to
other projects for similar purposes.

Note

Please be aware that the content in this chapter is more advanced
than some of the previous chapters.

We assume that you have already gone through Chapter 1, Preparing Your
Data Science Environment, and have RStudio readily available on the
computer that you will use to complete the recipes in this chapter.

Preparing for analysis

This recipe will prepare the groundwork with the tools you need to complete
this project. If you do not have R installed on your computer, please see the
instructions in Chapter 1, Preparing Your Data Science Environment.

Getting ready

You need a computer with R installed and an internet connection.

How to do it...

The following steps will get you prepared for the remainder of this chapter by
downloading the dataset from the BLS website and ensuring that we have the
needed R packages:

1. Download the Â 76.8 MB compressed data from
http://www.bls.gov/cew/data/files/2012/csv/2012_annual_singlefile.zip,
and save it to a location that you will remember.

2. Uncompress the file by right-clicking on it in explorer or finder, and use
the appropriate menu item.

If you are familiar with the command line in the Terminal in Linux/Mac OS
X, you can easily uncompress the downloaded file using unzip
2012_annual_singlefile.zip.

3. Launch the RStudio IDE on your computer (or just plain R for purists).
4. Load the R packages that we will need for this project:

library(data.table)
library(plyr)
library(dplyr)
library(stringr)
library(ggplot2)
library(maps)

http://www.bls.gov/cew/data/files/2012/csv/2012_annual_singlefile.zip

library(bit64)
library(RColorBrewer)
library(choroplethr)

If you do not have one of these packages installed on your machine, you can
easily install it using the following command, exchanging data.table for the
package name to be installed:

install.packages('data.table',repos='http://cran.r-project.org')

The R package repository, known as CRAN, has several mirrors around the
world. A mirror, in this usage, is a duplicate copy of the software repository
that is run on a server in a different region, providing faster access for
individuals near the location. You can, and should, choose a mirror
geographically closest to your location to speed up the package download. In
the preceding code snippet, you change http://cran.r-project.org to the
URL of your preferred CRAN mirror.

5. Finally, set your working directory to the path where you have saved the
file. This will tell R where you want it to look for the file:

setwd('path')

How it works...

We will primarily use three different R packages that are extremely useful in
importing, manipulating, and transforming large datasets.

The package data.table improves upon the data.frame object in R, making
operations faster and allowing the specification of an index variable in a
dataset, a concept familiar to database experts. It also allows the fast
aggregation of large data, including very fast-ordered joins. We will primarily
use the data.table package for its fread function, which allows (very) fast
importing of large-structured datasets into R. We will also investigate the
relative performance of functions in this package against other functions we
use in the benchmarking recipe later in this chapter.

The stringr package provides tools for text and string manipulation. This

package streamlines and syntactically unifies available string manipulation
functionalities available in R, making tasks involving string search,
manipulation, and extraction much easier. We will need these functionalities
here.

The dplyr package is the next iteration of the popular package, plyr, by Dr.
Hadley Wickham. It is targeted at rectangular data and allows very fast
aggregation, transformation, summarization, column selection, and joins. It
also provides syntactical sugar to allow commands to be strung together,
piping the results of one command into the next. This will be our workhorse
in this project.

The ggplot2 package will be our visualization workhorse. It implements the
Grammar of Graphics paradigm in R and provides a very flexible means of
creating visualizations.

The maps package provides geographical information about the US that we
will use in our visualizations.

See also

Refer to the dplyr reference material available at
https://github.com/hadley/dplyr/blob/master/README.md, which has
links to vignettes and other reference materials
Refer to the ggplot2 reference manual available at http://cran.r-
project.org/web/packages/ggplot2/ggplot2.pdf
Refer to the sqldf reference materials available at
https://code.google.com/p/sqldf/

https://github.com/hadley/dplyr/blob/master/README.md
http://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
https://code.google.com/p/sqldf/

Importing employment data into R

Our first step in this project is to import the employment data into R so that
we can start assessing the data and perform some preliminary analysis.

Getting ready

You should be ready to go ahead after completing the previous recipe.

How to do it...

The following steps will guide you through two different ways of importing
the CSV file:

1. We can directly load the data file into R (even from the compressed
version) using the following command:

ann2012 <- read.csv(unz('2012_annual_singlefile.zip',
 '2012.annual.singlefile.csv'), stringsAsFactors=F)

However, you will find that this takes a very long time with this file. There
are better ways.

2. We chose to import the data directly into R since there are further
manipulations and merges that we will do later. We will use the fread
function from the Â data.table package to do this:

library(data.table)
ann2012 <- fread('data/2012.annual.singlefile.csv')

That's it. Really! It is also many times faster than the other method. It will not
convert character variables to factors by default, so if you need factors later,
you will have to convert them, which in our opinion is a desirable feature in
any case.

How it works...

We were familiar with read.csv from Chapter 2, Driving Visual Analysis
with Automobile Data. It basically reads the data line by line, separating
columns by commas. As the data we are using for this project is 3.5 million
rows, it is still small enough to fit into the memory of most modern personal
computers, but will take quite some time to import using read.csv().

The fread function from the data.table package uses an underlying C-level
function to figure out from the file the length, number of fields, data types,
and delimiters in the file, and it then reads the file using the parameters it has
learned. As a result, it is significantly faster than read.csv. There is an
extensive description of the details of fread in the R documentation.

There's more...

One of the limitations currently in R is that data imported into R needs to fit
into the memory of the host computer. For large datasets, using an SQL-
based database for data storage and manipulation takes advantage of the
speed of the SQL-based database and circumvents R's memory limitation.
Often, in enterprise environments, data is stored in Oracle, SAP, MySQL, or
PostgreSQL databases.

The sqldf package is extremely useful if you are from an SQL background,
and many entering the world of data science have such a background. This
package allows you to use SQL commands and queries within R, and treats
data.frame objects in R just as you would treat tables in an SQL database. It
also allows you to connect with most SQL-based databases that you have
access, including SQLite, MySQL, and PostgreSQL, among others.

As a demonstration, we can import data into an SQLite database, and then
read and manipulate it there:

sqldf('attach blsdb as new')
read.csv.sql(file='2012.annual.singlefile.csv', sql='create table main.ann2012 as select * from file',
ann2012 <- sqldf("select * from main.ann2012", dbname='blsdb')

Note

You must have SQLite installed and available on your machine
for the preceding code to work. We will leave the installation up
to you.

This will also take some time, but you'll have the data in SQLite. The
preceding command actually doesn't ingest the data into R, but just imports it
into SQLite.

You can import the data into R using the following command:

ann2012 <- sqldf("select * from main.ann2012", dbname='blsdb')

You can also choose to do your manipulations using SQL within SQLite with
sqldf. For some users it will be easier to manipulate the data using SQL and
then merely import the munged data into R.

As the first part of this book is focused on R, we will not delve deeper into
the use of sqldf beyond what was presented here. However, if you are more
familiar with SQL, you are welcome to replicate the steps presented in R in
the various recipes with SQL commands.

See also

Refer to the SQLite documentation available at http://www.sqlite.org
Refer to the data.table documentation available at http://datatable.r-
forge.r-project.org/

http://www.sqlite.org
http://datatable.r-forge.r-project.org/

Exploring the employment data

Now that the data is imported into R and we have learned some strategies to
import larger datasets into R, we will do some preliminary analysis of the
data. The purpose is to see what the data looks like, identify idiosyncrasies,
and ensure that the rest of the analysis plan can move forward.

Getting ready

If you completed the last recipe, you should be ready to go.

How to do it...

The following steps will walk you through this recipe to explore the data:

1. First, let's see how large this data is:

> dim(ann2012)
[1] 3556289 15

Good, it's only 15 columns.

2. Let's take a peek at the first few rows so that we can see what the data
looks like:

head(ann2012)

You can refer to the following screenshot:

What are the variables own_code,industry_code, and so on, and what do
they mean? We might need more data to understand this data.

3. There is also a weird idiosyncrasy in this data. Some of the values for
total_annual_wages, taxable_annual_wages, and
annual_contributions look impossibly small. A peek at the actual data
shows that these numbers don't appear to be correct. However, fread
actually gives an indication of what is going on:

ann2012 <- fread('data/2012.annual.singlefile.csv', sep=',',
colClasses=c('character', 'integer', 'integer', 'integer',
'integer', 'integer', 'character',rep('integer',8)))

You can refer to the following screenshot:

4. This points to the fact that the bit64 package might be needed to
properly display these large numbers. Installing and loading this
package, and then re-importing the data corrects the problem, as seen in
the following command lines:

install.packages('bit64')
library('bit64')
ann2012 <- fread('data/2012.annual.singlefile.csv', sep=',',
 colClasses=c('character', 'integer', 'integer', 'integer',
 'integer', 'integer', 'character',rep('integer',8)))

You can refer to the following screenshot:

How it works...

The head command displays the first few lines (the default is the top six
lines) of a data frame. We notice that some of the headings are self-
explanatory, but some allude to codes that we currently don't have access to.
We will have to obtain additional data in order to make a meaningful
analysis. We could have looked at the data without importing it into R. The
UNIX command, less, and the Windows PowerShell command, type, could
have shown us the same thing as head did.

See also

Refer to the documentation for the dataset available at
http://www.bls.gov/cew/doc/layouts/csv_annual_layout.htm

http://www.bls.gov/cew/doc/layouts/csv_annual_layout.htm

Obtaining and merging additional data

In the previous recipe, we found that additional data was needed to
understand what the data in the CSV file actually represents, and this recipe
will directly address this need.

Getting ready

We can find additional data on the BLS website at
http://www.bls.gov/cew/datatoc.htm under the header Associated Codes
and Titles. There are five files there, which we will download to our
computer. They are as follows:

agglevel_titles.csv

(http://www.bls.gov/cew/doc/titles/agglevel/agglevel_titles.csv)
area_titles.csv

(http://www.bls.gov/cew/doc/titles/area/area_titles.csv)
industry_titles.csv

(http://www.bls.gov/cew/doc/titles/industry/industry_titles.csv)
ownership_titles.csv

(http://www.bls.gov/cew/doc/titles/ownership/ownership_titles.csv)
size_titles.csv

(http://www.bls.gov/cew/doc/titles/size/size_titles.csv)

We download them to our computer, remembering where we stored them.
We need to get ready to import them into R and merge them with our original
data.

How to do it...

The following steps will lead you through loading these files into R and
joining them into a larger data frame:

http://www.bls.gov/cew/datatoc.htm
http://www.bls.gov/cew/doc/titles/agglevel/agglevel_titles.csv
http://www.bls.gov/cew/doc/titles/area/area_titles.csv
http://www.bls.gov/cew/doc/titles/industry/industry_titles.csv
http://www.bls.gov/cew/doc/titles/ownership/ownership_titles.csv
http://www.bls.gov/cew/doc/titles/size/size_titles.csv

1. We will now import these data files into R using the following
command lines:

for(u in c('agglevel','area','industry','ownership','size')){
assign(u,read.csv(paste('data/',u,'_titles.csv',sep=''),stringsAsFactors=
F))
}

This is an example of code that makes it easier for us to do repeated tasks.

2. Each of these datasets has exactly one variable (column header) in
common with our original dataÂ ann2012Â as shown in the following
screenshot:

3. Hence it should be fairly easy to combine the datasets together. We'll
join four of these datasets with ann2012 now, and save area, that is, the
data from area_titles.csv, for the next recipe, since we want to
manipulate it a bit:

codes <- c('agglevel','industry','ownership','size')
ann2012full <- ann2012
for(i in 1:length(codes)){
eval(parse(text=paste('ann2012full <- left_join(ann2012full, ',codes[i],')', sep='')))
}

The end result is shown in the following screenshot:

How it works...

In step 1 of the How to do it... section, we want to assign each dataset to its
own object. We can write an individual line of code for each import, but this
code allows us to do this much faster, and it will be easier to maintain in the
future. The assign command takes two basic inputs: a variable name and a
value to be assigned to the variable name. The for loop here doesn't iterate
over numbers, but over objects. At the first iteration, u takes the value
agglevel. The assign function takes the name agglevel and assigns it the
result of the read.csv command. Within the paste command, we again use
the value of u, since all the files we are importing have the same naming
convention. It is this common naming convention that allows us to use this
type of coding. Thus, the first iteration givesÂ assign('agglevel',
read.csv('data/agglevel_title.csv')), and so forth.

In step 2, we join the datasets together. We first copy the original data to a
new name, ann2012full, so that we can build up this new dataset without
corrupting the original data in case something goes wrong. We then use a
macro-like construct to join all the new datasets to the original one, iterating
over numbers in the for loop and the indices of the vector code.

Let's work our way inside out in this complex command (a sound strategy to
understand complex code in general). Within the paste command, we create
the command we would like evaluated. We want to do a left_join (this is
from the dplyr package), joining ann2012full with agglevel in the first
iteration. The left_join ensures that all the rows of ann2012full are
preserved, and the rows of agglevel are appropriately replicated to match the
number of rows in ann2012full. Since there is only one common variable in
the two datasets, left_join automatically chooses to join using this.

Note

In general, left_join will join the two datasets using all the
variable names it finds common between the two. If you do not
want this, you can specify which variables you want to use for
the join by specifying, for example, left_join(ann2012full,
agglevel, by="agglvl_code ").

The eval statement then evaluates the command we constructed using the
paste command. We iterate over the names in code so that each of the four
datasets gets joined with ann2012full.

A quick check will show that the number of rows in ann2012full after the
joins, and in ann2012, is the same.

Adding geographical information

The main purpose of this chapter is to look at the geographical distribution of
wages across the US. Mapping this out requires us to first have a map.
Fortunately, maps of the US, both at the state and county-levels, are available
in the maps package, and the data required to make the maps can be extracted.
We will align our employment data with the map data in this recipe so that
the correct data is represented at the right location on the map.

Getting ready

We already have the area dataset imported into R, so we are ready to go.

How to do it...

The following steps will guide you through the process of creating your first
map in R:

1. Let's first look at the data in area:

head (area)

The output is shown in the following screenshot:

We see that there is something called area_fips here. Federal Information
Processing Standards (FIPS) codes are used by the Census Bureau to
designate counties and other geographical areas in the US.

2. We want to capitalize all the names, according to the conventions. We'll
write a small function to do this:

simpleCap <-function(x){
if(!is.na(x)){
s <- strsplit(x,' ')[[1]]
paste(toupper(substring(s,1,1)), substring(s,2), sep='', collapse=' ')
} else {NA}
}

3. The maps package contains two datasets that we will use; they are
county.fips and state.fips. We will first do some transformations. If
we look at county.fips, we notice that the FIPS code there is missing a
leading 0 on the left for some of the codes. All the codes in our
employment data comprise of five digits:

> data(county.fips)
> head(county.fips)
 fips polyname
1 1001 alabama,autauga
2 1003 alabama,baldwin
3 1005 alabama,barbour
4 1007 alabama,bibb
5 1009 alabama,blount
6 1011 alabama,bullock

4. The stringr package will help us out here:

county.fips$fips <- str_pad(county.fips$fips, width=5, pad="0")

5. We want to separate the county names from the polyname column in
county.fips. We'll get the state names from state.fips in a minute:

county.fips$polyname <- as.character(county.fips$polyname)
county.fips$county <- sapply(
 gsub('[a-z\]+,([a-z\]+)','\\1',county.fips$polyname), simpleCap)
county.fips <- unique(county.fips)

6. The state.fips data involves a lot of details:

> data(state.fips)

The output is shown in the following screenshot:

7. We'll again pad the fips column with a 0, if necessary, so that they have
two digits, and capitalize the state names from polyname to create a new
state column. The code is similar to the one we used for the
county.fips data:

state.fips$fips <- str_pad(state.fips$fips, width=2, pad="0", side='left')
state.fips$state <- as.character(state.fips$polyname)
state.fips$state <- gsub("([a-z\]+):[a-z\ \\']+",'\\1',state.fips$state)
state.fips$state <- sapply(state.fips$state, simpleCap)

8. We make sure that we have unique rows. We need to be careful here,
since we only need to have uniqueness in the fips and state values,
and not in the other code:

mystatefips <-unique(state.fips[,c('fips','abb','state')])

9. The unique function, when applied to a data.frame object, returns the
unique rows of the object. You might be used to using unique on a
single vector to find the unique elements in the vector.

10. We get a list of the lower 48 state names. We will filter our data to look
only at these states:

lower48 <- setdiff(unique(state.fips$state),c('Hawaii','Alaska'))

Note

The setdiff set operation looks for all the elements in the first
set that are not in the second set.

11. We put all this information together into a single dataset, myarea:

myarea <- merge(area, county.fips, by.x='area_fips', by.y='fips', all.x=T)
myarea$state_fips <- substr(myarea$area_fips, 1,2)
myarea <- merge(myarea, mystatefips,by.x='state_fips',by.y='fips', all.x=T)

12. Lastly, we join the geographical information with our dataset, and filter
it to keep only data on the lower 48 states:

ann2012full <- left_join(ann2012full, myarea)
ann2012full <- filter(ann2012full, state %in% lower48)

13. We now store the final dataset in an R data (rda) file on disk. This
provides an efficient storage mechanism for R objects:

save(ann2012full, file='data/ann2014full.rda',compress=T)

How it works...

The 12 steps of this recipe covered quite a bit of material, so let's dive into
some of the details, starting with step 2. The simpleCap function is an
example of a function in R. We use functions to encapsulate repeated tasks,
reducing code duplication and ensuring that errors have a single point of
origin. If we merely repeat code, changing the input values manually, we can
easily make errors in transcription, break hidden assumptions, or accidentally
overwrite important variables. Furthermore, if we want to modify the code,
we have to do it manually at every duplicate location. This is tedious and
error-prone, and so we make functions, a best practice that we strongly
encourage you to follow.

The simpleCap function uses three functions: strsplit, toupper, and
substring. The strsplit function splits strings (or a vector of strings)
whenever it finds the string fragment to split on (in our case, ' ', or a space).
The substring function extracts substrings from strings between the
character locations specified. Specifying only one character location implies
extracting from this location to the end of the string. The toupper function
changes the case of a string from lowercase to uppercase. The reverse
operation is done by tolower.

From step 3, packages often have example data bundled with them.
county.fips and state.fips are examples of datasets that have been
bundled into the maps package.

The stringr package, used in step 4, is another package by Dr. Wickham,
which provides string manipulation functions. Here, we use str_pad, which
pads a string with a character (here, 0) to give the string a particular width.

In step 5, we use the inbuilt regular expression (regex) capabilities in R. We
won't talk about regular expressions too much here. The gsub function looks
for the first pattern and substitutes the second pattern in the string specified as
third. Here, the pattern we're looking for comprises of one or more letters or
spaces ([a-z\]+), then a comma, and then one or more letters or spaces.
The second set of letters and spaces is what we want to keep, so we put
parentheses around it. The 1 pattern says to replace the entire pattern with the
first pattern we used parentheses around. This replacement happens for every
element of the polyname field.

Since we want capitalization for every element in polyname, we can use a for
loop, but choose to use the more efficient sapply instead. Every element in
polyname is passed through the simpleCap function, and is thus capitalized in
step 7.

In step 10, we join the area, county.fips, and mystatefips datasets
together. We use the merge function rather than left_join, since the
variables we want to join on have different names for different data.frame
objects. The merge function in the R standard library allows this flexibility.
To ensure a left join, we specify all.x=TRUE.

In step 11, we join the myarea data frame to our ann2014full dataset. We
then use the filter function to subset the data, restricting it to data from the
lower 48 states. The filter function is from the dplyr package. We'll speak
about the functionalities in dplyr in the next recipe.

See also

Read about regular expressions in R at http://stat.ethz.ch/R-manual/R-

http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html

patched/library/base/html/regex.html
Refer to information about the stringr library available at
http://journal.r-project.org/archive/2010-2/RJournal_2010-
2_Wickham.pdf

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf

Extracting state- and county-level wage and
employment information

So far, we worked to get the data into shape for analysis. We'll now start with
looking at the geographical distribution of the average annual pay per state
and per county.

Getting ready

If you have thoroughly followed the recipes in this chapter until now, you
will have the data in a form from where you can extract information at
different levels. We're good to go!

How to do it...

We will first extract data from ann2014full at the state-level. We need to
perform the following steps:

1. We look at the aggregate state-level data. A peek at agglevel tells us
that the code for the level of data that we want is 50. Also, we only want
to look at the average annual pay (avg_annual_pay) and the average
annual employment level (annual_avg_emplvl), and not the other
variables:

d.state <- filter(ann2014full, agglvl_code==50)
d.state <- select(d.state, state, avg_annual_pay, annual_avg_emplvl)

2. We create two new variables, wage and empquantile, which discretizes
the pay and employment variables:

d.state$wage <- cut(d.state$avg_annual_pay,
quantile(d.state$avg_annual_pay, c(seq(0,.8, by=.2), .9, .95, .99, 1)))
d.state$empquantile <- cut(d.state$annual_avg_emplvl,
 quantile(d.state$annual_avg_emplvl, c(seq(0,.8,by=.2),.9,.95,.99,1)))

3. We also want the levels of these discretized variables to be meaningful.
So we run the following commands:

x <- quantile(d.state$avg_annual_pay, c(seq(0,.8,by=.2),.9, .95, .99, 1))
xx <- paste(round(x/1000),'K',sep='')
Labs <- paste(xx[-length(xx)],xx[-1],sep='-')
levels(d.state$wage) <- Labs

x <- quantile(d.state$annual_avg_emplvl, c(seq(0,.8,by=.2),.9, .95, .99, 1))
xx <- ifelse(x>1000, paste(round(x/1000),'K',sep=''),round(x))
Labs <- paste(xx[-length(xx)],xx[-1],sep='-')
levels(d.state$empquantile) <- Labs

The 0, 0.2,0.4, 0.6, 0.8, 0.9, 0.95, 0.99, and 1 quantiles of annual average pay
is obtained, and it is then obtained per thousand number. The task is then
repeated for the annual average employment.Â

4. We repeat this process at the county-level. We will find that the
appropriate aggregation level code is 70 (agglvl_code==70). Everything
else will be the same. Let's try to be a bit smarter this time around. First
of all, we will discretize our variables the same way, and then change
the labels to match. A function might be a good idea! The following
command lines depict this:

Discretize <- function(x, breaks=NULL){
if(is.null(breaks)){
 breaks <- quantile(x, c(seq(0,.8,by=.2),.9, .95, .99, 1))
 if (sum(breaks==0)>1) {
 temp <- which(breaks==0, arr.ind=TRUE)
 breaks <- breaks[max(temp):length(breaks)]
 }
 }
 x.discrete <- cut(x, breaks, include.lowest=TRUE)
 breaks.eng <- ifelse(breaks > 1000,
 paste0(round(breaks/1000),'K'),
 round(breaks))
 Labs <- paste(breaks.eng[-length(breaks.eng)], breaks.eng[-
1],
 sep='-')
 levels(x.discrete) <- Labs
 return(x.discrete)
}

5. We alluded to the syntactic sugar of dplyr before; now, we see it in

action. The dplyr package allows you to string together different
operations, piping the results of one operation as input for the next,
using the %.% operator. We'll describe the main operations of dplyr in
the next recipe. Using some function encapsulation, the following code
achieves everything that we spent significantly more lines of code to
achieve in steps 1-3:

d.cty <- filter(ann2012full, agglvl_code==70)%.%
select(state,county,abb, avg_annual_pay, annual_avg_emplvl)%.%
mutate(wage=Discretize(avg_annual_pay),
empquantile=Discretize(annual_avg_emplvl))

We now have the basic datasets that we need to visualize the geographic
patterns in the data.

How it works...

The preceding five steps covered a lot of R code, so let's start breaking things
down. The two functions, filter and select, are from dplyr. The dplyr
package provides five basic functions, which are as follows:

filter: This creates subsets of the data based on specified criteria
select: This selects columns or variables from the dataset
mutate: This creates new columns or variables in a dataset, which are
derived from other variables in the dataset
group_by: This splits the data by a variable or set of variables, and
subsequent functions operate on each component defined by a unique
variable value or combination
arrange: This rearranges the data (or sorts it) according to variable(s) in
the dataset

Each of these functions can operate on a data.frame, data.table, or tbl
object, which is part of dplyr.

The cut function discretizes a continuous variable based on specified
breakpoints or thresholds. Here, we specify the thresholds based on quantiles
of the variable. We specify which quantiles we want by a sequence of
fractions:

c(seq(0, .8, by=.2), .9, .95, .99, 1)

This is done using the seq function to create a regular sequence of numbers
with a start value, an end value, and the difference between two successive
values.

In step 3, we take the specified thresholds and format them. Numbers above
1,000 are truncated at the thousands place and appended with a K, as is
conventionally seen. Using round without specifying the number of decimal
places implies no decimal places.

Further, in step 3, we want our labels to represent a range. So we need to
create the labels by putting a dash (-) between successive values of our
formatted thresholds. One way of doing this is to create two copies of the
vector of thresholds, one without the last element and another without the
first element. We then paste them together with -. Notice that this trick
allows successive thresholds to be aligned and pasted together. If you're not
convinced, print out xx[-length(xx)] and xx[-1], and see for yourself.

The Discretize function encapsulates the work we were doing in
discretizing our outcomes and formatting their labels.

This code snippet uses the syntax of dplyr to string together functions. We
first subset the original data, keeping only data that has agglvl_code=50
(note the == in the code). We then pipe the resulting reduced data into the
second function, select, which keeps only the four variables we're interested
in. This further reduces data, and it is then inputted into the mutate function,
which then creates two new variables in the data object. This final object is
then stored with the variable name d.cty.

See also

Get more details about dplyr at
http://blog.rstudio.org/2014/01/17/introducing-dplyr/

http://blog.rstudio.org/2014/01/17/introducing-dplyr/

Visualizing geographical distributions of
pay

We created datasets that contain the data we need to visualize average pay
and employment by county and state. In this recipe, we will visualize the
geographical distribution of pay by shading the appropriate areas of the map
with a color that maps to a particular value or range of values. This is
commonly referred to as a chloropleth map; this visualization type has
become increasingly popular over the last few years as it has become much
simpler to make such maps, especially online. Other geographic
visualizations will overlay a marker or some other shape to denote data; there
is no need to fill specific shapes with geographically meaningful boundaries.

Getting ready

After the last recipe, you should be ready to use the datasets we created to
visualize geographical distributions. We will use the ggplot2 package to
generate our visualizations. We will also use the RColorBrewer package,
which provides palettes of colors that are visually appealing. If you don't
currently have RColorBrewer, install it using
install.packages('RColorBrewer', repos='http://cran.r-

project.org').

How to do it...

The following steps walk you through the creation of this geospatial data
visualization:

1. We first need to get some data on the map itself. The ggplot2 package
provides a convenient function, map_data, to extract this from data
bundled in the maps package:

library(ggplot2)

library(RColorBrewer)
state_df <- map_data('state')
county_df <- map_data('county')

2. We now do a bit of transforming to make this data conform to our data:

transform_mapdata <- function(x){
 names(x)[5:6] <- c('state','county')
 for(u in c('state','county'){
 x[,u] <- sapply(x[,u],simpleCap)
 }
 return(x)
}
state_df <- transform_mapdata(state_df)
county_df <- transform_mapdata(county_df)

3. The data.frame objects, state_df and county_df, contain the latitude
and longitude of points. This is our primary graphical data and it needs
to be joined with the data we created in the previous recipe, which
contains what is in effect the color information for the map:

chor <- left_join(state_df, d.state, by='state')
ggplot(chor, aes(long,lat,group=group))+
geom_polygon(aes(fill=wage))+geom_path(color='black',size=0.2) + scale_fill_brewer(palette='PuRd') +
axis.text.y=element_blank(), axis.ticks.x=element_blank(),
axis.ticks.y=element_blank())

This gives us the following figure that depicts the distribution of average
annual pay by state:

4. We can similarly create a visualization of the average annual pay by
county, which will give us more granular information about the
geographical distribution of wages:

chor <- left_join(county_df, d.cty)
ggplot(chor, aes(long,lat, group=group))+
 geom_polygon(aes(fill=wage))+
 geom_path(color='white',alpha=0.5,size=0.2)+
 geom_polygon(data=state_df, color='black',fill=NA)+
 scale_fill_brewer(palette='PuRd')+
 labs(x='',y='', fill='Avg Annual Pay')+
 theme(axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks.x=element_blank(), axis.ticks.y=element_blank())

This produces the following figure showing the geographical distribution of
average annual pay by county:

It is evident from the preceding figure that there are well-paying jobs in
western North Dakota, Wyoming, and northwestern Nevada, most likely
driven by new oil exploration opportunities in these areas. The more obvious
urban and coastal areas also show up quite nicely.

How it works...

Let's dive into the explanation of how the preceding 4 steps work. The
map_data function is provided by ggplot2 to extract map data from the maps
package. In addition to county and state, it can also extract data for the
france, italy, nz, usa, world, and world2 maps provided by the maps
package.

The columns that contain state and county information in county_df and
state_df are originally named region and subregion. In step 2, we need to
change their names to state and county, respectively, to make joining this

data with our employment data easier. We also capitalize the names of the
states and counties to conform to the way we formatted the data in our
employment dataset.

For the creation of the map in step 3, we create the plotting dataset by joining
state_df and d.state using the name of the state. We then use ggplot to
draw the map of the US and fill in each state with a color corresponding to
the level of wage and the discretized average annual pay created in the
previous recipe. To elaborate, we establish that the data for the plot comes
from chor, and we draw polygons (geom_polygon) based on the latitude and
longitude of the borders of each state, filling them with a color depending on
how high wage is, and then we draw the actual boundaries of the states
(geom_path) in black. We specify that we will use a color palette that starts at
white, goes through purple, and has red corresponding to the highest level of
wage. The remainder of the code is formatted by specifying labels and
removing axis annotations and ticks from the plot.

For step 4, the code is essentially the same as step 3, except that we draw
polygons for the boundaries of the counties rather than the states. We add a
layer to draw the state boundaries in black (geom_polygon(data=state_df,
color='black', fill=NA)), in addition to the county boundaries in white.

See also

Refer to the ggplot2 documentation available at http://www.ggplot2.org

http://www.ggplot2.org

Exploring where the jobs are, by industry

In the previous recipe, we saw how to visualize the top-level aggregate data
on pay. The employment dataset has more granular data, divided by
public/private sectors and types of jobs. The types of jobs in this data follow
a hierarchical coding system called North American Industry
Classification System (NIACS). In this recipe, we will consider four
particular industries and look at visualizing the geographical distribution of
employment in these industries, restricted to private sector jobs.

We will look at four industrial sectors in this recipe:

Agriculture, forestry, fishing, and hunting (NIACS 11)
Mining, quarrying, and oil and gas extraction (NIACS 21)
Finance and insurance (NIACS 52)
Professional and technical services (NIACS 54)

How to do it...

We need to create a subset of the employment data, including the data for
industrial sectors, but restricting it to the private sector, by performing the
following steps:

1. We start by filtering the data by the conditions we are imposing on the
industry and private sectors, and keeping only the relevant variables:

d.sectors <- filter(ann2012full, industry_code %in% c(11,21,54,52),
own_code==5, # Private sector
agglvl_code == 74 # county-level
) %.%
select(state,county,industry_code, own_code,agglvl_code,
 industry_title, own_title, avg_annual_pay,
 annual_avg_emplvl)%.%
mutate(wage=Discretize(avg_annual_pay),
emplevel=Discretize(annual_avg_emplvl))
d.sectors <- filter(d.sectors, !is.na(industry_code))

Note

Here, our selection is based on a set of industry codes, and we
restrict ourselves to county-level data. This code is different from
before since we're now looking at industry-specific data.

2. We now create the visualization using ggplot2. This visualization will
be an array of four panels, one for each industrial sector. Each panel will
have a county-level map of the US, with colors signifying the level of
employment in each county in 2012 in each particular industry. We will
also choose a blue-dominated palette for this visualization:

chor <- left_join(county_df, d.sectors)
ggplot(chor, aes(long,lat,group=group))+
 geom_polygon(aes(fill=emplevel))+
 geom_polygon(data=state_df, color='black',fill=NA)+
 scale_fill_brewer(palette='PuBu')+
 facet_wrap(~industry_title, ncol=2, as.table=T)+
 labs(fill='Avg Employment Level',x='',y='')+
 theme(axis.text.x=element_blank(),
 axis.text.y=element_blank(),
 axis.ticks.x=element_blank(),
 axis.ticks.y=element_blank())

This produces the following visualization, showing geographical distribution
of employment by industry:

How it works...

In this recipe, we used the dplyr functions for data munging. One of our filter
criteria was that the industry_code variable should have one of the values
out of 11, 21, 52, or 54. This was achieved by the %in% operator, which is a
set operation. It asks if an element on the left is a member of the set on the
right. We have multiple criteria in the filter statement, separated by
commas. This implies an AND relationship in that all of the criteria must be
satisfied in order for the data to pass the filter.

We noticed that there were some missing values in the industry code. This
resulted in an extra panel in the visualization, corresponding to data where
the industry code was missing. We didn't want this, so we filtered out this
data in this first step.

In the second step, the command to create the visualization is essentially the

same as in the previous recipe, except for the following line:

facet_wrap(~industry_title, ncol=2)

This command splits the data up by the value of industry_title, creates
separate visualizations for each value of industry_title, and puts them
back onto a grid with two columns and an appropriate number of rows. We
also used industry_title instead of industry_code here (they give the
same visualization) so that the labeling of the panels is understandable, rather
than comprising just some numbers that require the reader to look up their
meaning.

There's more...

This recipe is the tip of the iceberg for this dataset. There are many levels that
can be explored with this data, both in terms of private/public sectors and in
terms of drilling down into different industries. The additional quarterly data
from 2012 is also available and can shed light on temporal patterns. The
annual and quarterly data is available from 1990 onwards. Further analyses
are possible by the association of temporal patterns of employment with other
socioeconomic events. The choroplethr and rMaps packages provide ways
of creating animations over time for this type of data.

See also

Read about the rMaps package at http://rmaps.github.io and
http://rmaps.github.io/blog/posts/animated-choropleths/
Read about the choroplethr package at
https://github.com/trulia/choroplethr
Have a look at the choropleth challenge results
athttp://blog.revolutionanalytics.com/2009/11/choropleth-challenge-
result.html
Look at examples of animated maps at http://www.r-
bloggers.com/animated-choropleths-using-animation-ggplot2-rcharts-
googlevis-and-shiny-to-visualize-violent-crime-rates-in-different-us-
states-across-5-decades/

http://rmaps.github.io
http://rmaps.github.io/blog/posts/animated-choropleths/
https://github.com/trulia/choroplethr
http://blog.revolutionanalytics.com/2009/11/choropleth-challenge-result.html
http://www.r-bloggers.com/animated-choropleths-using-animation-ggplot2-rcharts-googlevis-and-shiny-to-visualize-violent-crime-rates-in-different-us-states-across-5-decades/

Animating maps for a geospatial time series

One of the real interests in this project is to see how wage patterns, as a
surrogate for income patterns, changed over time. The QCEW site provides
data from 2003 to 2012. In this recipe, we will look at the overall average
annual pay by county for each of these years and create an animation that
displays the changes in the pay pattern over this period.

Getting ready

For this recipe, we need to download the annual data for the years 2003 to
2011 from the BLS website, at http://www.bls.gov/cew/datatoc.htm. You will
need to download the files corresponding to these years for the QCEW
NIACS-based data files in the column CSVs Single Files-Annual
Averages. Store these files (which are compressed .zip files) in the same
location as the zipped 2012 data that you downloaded at the beginning of this
project. Don't unzip them! You must also download and install the
choroplethr package using install.packages('chloroplethr'), if you
haven't already done so.

Note

Note that this recipe is relatively memory-intensive. Those
running on 32-bit machines might face out-of-memory issues.

How to do it...

What we need to do is import the data for all the years from 2003 through
2012 and extract data for the county-level (agglvl_code==70) average annual
pay (avg_annual_pay) for each county, plot it, and then string the pay values
together in an animation. Since we basically need to do the same thing for
each year's data, we can do this in a for loop, and we can create functions to

http://www.bls.gov/cew/datatoc.htm

encapsulate the repeated actions. We start by writing code for a single year,
performing the following steps:

1. We import the data from the ZIP file that we call zipfile in this
prototype code. In reality, the filenames are of the pattern
2003_annual_singlefile.zip, and the CSV files in them are of the
pattern 2003.annual.singlefile.csv. We will use the common
patterns in the ZIP and CSV files in our code to automate the process.
For me, the data lies in a folder called data, which is reflected in the
following code:

unzip(file.path('data',zipfile), exdir='data') # unzips the file
csvfile <- gsub('zip','csv', zipfile) # Change file name
csvfile <- gsub('_','.',csvfile) # Change _ to . in name
dat <- fread(file.path('data', csvfile)) # read data

2. We now join the employment data with the geographical data from
myarea:

dat <- left_join(dat, myarea)

3. We then use the dplyr functions to extract the county-level aggregate
pay data, keeping the state and county information:

dat <- filter(dat, agglvl_code==70) %.% # County-level aggregate
select(state, county, avg_annual_pay) # Keep variables

4. We then encapsulate the actions in steps 1 through 3 in a function:

get_data <- function(zipfile){
 unzip(file.path('data',zipfile), exdir='data') # unzips the file
 csvfile <- gsub('zip','csv', zipfile) # Change file name
 csvfile <- gsub('_','.',csvfile) # Change _ to . in name
 dat <- fread(file.path('data', csvfile)) # read data
 dat <- left_join(dat, myarea)
 dat <- filter(dat, agglvl_code==70) %.% # County-level aggregate
 select(state, county, avg_annual_pay) # Keep variables
 return(dat)
}

5. We now have to repeat this for each of the 10 years and store the data.
For this type of data, a list object usually makes sense:

files <- dir('data', pattern='annual_singlefile.zip') # file names
n <- length(files)
dat_list <- vector('list',n) # Initialize the list
for(i in 1:n){
 dat_list[[i]]<- get_data(files[i]) # ingest data
 names(dat_list)[i] <- substr(files[i],1,4) #label list with years
}

6. Next, we start creating the visualizations. Since we are essentially
creating 10 visualizations, the colors need to mean the same thing on all
of them for comparison purposes. So the discretization needs to be the
same for all the years:

annpay <- ldply(dat_list) # puts all the data together
breaks <- quantile(annpay$avg_annual_pay,
c(seq(0,.8,.2),.9,.95,.99,1)) # Makes a common set of breaks

7. We will create the same visualization for each year, using the same
breaks. Let's create a function for this common visualization to be
produced. We will use ggplot2 for the visualizations. The input values
are the data that we create using get_data, and the output is a plot
object that can create the visualization:

mychoro <- function(d, fill_label=''){
 # d has a variable "outcome" that
 # is plotted as the fill measure
 chor <- left_join(county_df, d)
 plt <- ggplot(chor, aes(long,lat, group=group))+
 geom_polygon(aes(fill=outcome))+
 geom_path(color='white',alpha=0.5,size=0.2)+
 geom_polygon(data=state_df, color='black',fill=NA)+
 scale_fill_brewer(palette='PuRd')+
 labs(x='',y='', fill=fill_label)+
 theme(axis.text.x=element_blank(),
 axis.text.y=element_blank(),
 axis.ticks.x=element_blank(),axis.ticks.y=element_blank())
 return(plt)
}

8. We now create plot objects for each year using a for loop. We store
these objects in a list, with each element corresponding to each year. In
the process, we create a new variable, outcome, which is the discretized
pay variable, using the common breaks. This variable needs to be called

outcome because of the way we designed the mychoro function:

plt_list <- vector('list',n)
for(i in 1:n){
dat_list[[i]] <- mutate(dat_list[[i]],
outcome=Discretize(avg_annual_pay,breaks=breaks))
plt_list[[i]] <-
mychoro(dat_list[[i]])+ggtitle(names(dat_list)[i])
}

9. The choroplethr package has the utility function,
choroplethr_animate, which takes a list of plot objects created with
ggplot2 and makes a web page with an animated GIF, layering the plots
we created in order. The default web file is
animated_choropleth.html:

library(choroplethr)
choroplethr_animate(plt_list)

We extract three panels from this animation here to give you a flavor of what
the animation looks like:

Even from this limited view of the data, we can see the striking growth of
employment and wealth in western North Dakota, Wyoming, and northeast
Nevada, probably due to the discovery, exploration, and mining of shale oil
in this region. We can also see that generally, over the eight years shown
here, pay has risen across the country; however, regions throughout the heart
of the continental United States have seen almost no change in average pay
over this period. We also see a clear increase and expansion of high pay in
both California and the northeast. Recall that all three plots are on the same
color scale, and so, the interpretation is consistent across them.

How it works...

We covered the individual functionality used in this recipe in previous
recipes and so we will not repeat them. However, looking at the big picture
here shows us two key points worth noting. First, we had to run through a
common set of steps multiple times to create a single image. As we had to go
through the same steps to create each image used in the final animation, we
started to operationalize the code a bit, refactoring repeated code blocks into
functions.

Secondly, the set of steps needed to create each image is another
demonstration of the stages of the data science pipeline. In stage one, we
acquire the data through the ingestion of CSV files. Our understanding of the
dataset has been built in previous recipes, so the exploration and
understanding stage (stage 2 of the pipeline) is a bit light. We join disparate
datasets and filter them for stage 3, the munging, wrangling, and
manipulation stage. For stage 4, analysis and modeling, we simply discretize
the data and then map it to a particular but consistent color scale. Finally, the
final data product, the animated choropleth, is used to communicate the vast
amount of data in a concise and quickly understandable fashion.

There is more...

The R package choroplethr can directly create the individual choropleths
using the choropleth function, which uses ggplot2. However, we didn't like

the default appearance of the output, and customization was easier using
ggplot2 directly.

Dr. Vaidyanathan, the creator of the popular rCharts package, also created
the rMaps package. It creates choropleths from R using JavaScript
visualization libraries for presentation on the Web, and it can also create
animated choropleths using the function ichoropleth. However, the
package is still in development at the time of writing, so we didn't have the
facility to create county-level maps. An example with state-level maps is
shown in the rMaps blog at http://rmaps.github.io/blog/posts/animated-
choropleths/.

http://rmaps.github.io/blog/posts/animated-choropleths/

Benchmarking performance for some
common tasks

R and its package ecosystem often provide several alternative ways of
performing the same task. R also promotes users to create their own functions
for particular tasks. When execution time is important, benchmarking
performance is necessary to see which strategy works best. We will
concentrate on speed in this recipe. The two tasks we will look at are loading
the data into R and joining two data objects based on a common variable. All
tests are done on a Windows 7 desktop running a 2.4 GHz Intel processor
with 8 GB of RAM.

Getting ready

We will use the ann2012full and industry data objects for our performance
experiments here, along with the 2012 annual employment data CSV file for
data loading. Since you already have these, you are good to go. If you don't,
you will need to install the two functions, rbenchmark and microbenchmark,
using the install.packages() command.

How to do it...

The following steps will walk us through benchmarking two different tasks in
R:

1. Our first task is to load the employment data into R. The
2012.annual.singlefile.csv file has 3,556,289 lines of data and 15
columns. While we used fread in this chapter, there are many other
possible ways of importing this data, which are as follows:

The first and most standard way is to use read.csv to read the CSV file. You
can also unzip the original 2012_annual_singlefile.zip data file on the fly

and read the data using read.csv. We can save the data to an RData file the
first time we load it, and also subsequent times we load this file, to import the
data into R

2. The most basic way to benchmark speed is using the system.time
function, which measures the time (both elapsed and actual computing
time) taken for the task to be performed:

> system.time(fread('data/2012.annual.singlefile.csv'))
 user system elapsed
 14.817 0.443 15.23

Note that the times you see will be different than those listed in the preceding
command.

3. However, there are packages in R that make benchmarking and
comparing different functions much easier. We will introduce the
rbenchmark package, which provides the benchmark function that allows
the simultaneous comparison of different functions:

library(rbenchmark)
opload <- benchmark(
 CSV=read.csv('data/2012.annual.singlefile.csv',
 stringsAsFactors=F),
 CSVZIP=read.csv(unz('data/2012_annual_singlefile.zip',
 '2012.annual.singlefile.csv'), stringsAsFactors=F),
 LOAD = load('data/ann2012full.rda'),
 FREAD = fread('data/2012.annual.singlefile.csv'),
 order='relative', # Report in order from shortest to longest
 replications=5
)

You can refer to the following screenshot for the output of the preceding
commands:

Note that the results are ordered, and the relative times are recorded under the
relative column. This shows that fread is quite a bit faster than reading
using read.csv. The very interesting thing is that, on an average, it is four
times faster than loading the data from an RData file, which is the usual
storage method for R data. It is apparently faster to load the data from the file
using fread than storing the data in R's own serialized format!

4. Our second task is to perform a left outer join of two data objects. We'll
look at a task that we have already performed-a left join of the
employment data with the industry codes. A left join ensures that the
rows of data on the left of the operation will be preserved through the
operation, and the other data will be expanded by repetition or missing
data to have the same number of rows. We used left_join in this
chapter, but there are three other strategies that we can take, which are
as follows:

The merge function available in R's standard library
The join function from the plyr package
The merge function from the data.table package, first
transforming the data into data.table objects

5. We will again use the benchmark function to compare these strategies
withleft_join:

ann2012full_dt <- data.table(ann2012full, key='industry_code')
industry_dt <- data.table(industry, key='industry_code')
op <- benchmark(
 DT = data.table::merge(ann2012full_dt, industry_dt,
 by='industry_code', all.x=T),
 PLYR = plyr::join(ann2012full, industry,
 by='industry_code',type='left'),
 DPLYR = dplyr::left_join(ann2012full, industry),
 DPLYR2 = dplyr::left_join(ann2012full_dt, industry_dt),
 MERGE = merge(ann2012full, industry,
 by='industry_code', all.x=T),
 order='relative',
 replications=5
)

You can refer to the following screenshot for the output of the preceding
commands:

Here, we see that the data.table method is a lot faster than any other
strategy. Using dplyr is about 12 times slower for this particular task, plyr is
about 100 times slower, and the standard merge method is 200 times slower.
There is a bit of overhead in converting the data.frame objects to
data.table objects, but the margin of advantage in this task overcomes this
overhead.

How it works...

The basic workhorse of time benchmarking in R is the system.time function.
This function records the time when evaluation of an expression starts, runs
the expression, and then notes the time when it finishes. It then reports the
difference of the two times. By default, garbage collection takes place before
each evaluation so that the results are more consistent and maximal memory
is freed for each evaluation.

The benchmark function in the rbenchmark package provides additional
flexibility. It wraps the system.time function and allows several expressions
to be evaluated in a single run. It also does some basic computations, such as
relative times, to simplify reporting.

In terms of our tasks here, fread uses a powerful optimized C function to
read the data, resulting in a high degree of speed optimization. The read.csv
function just reads the data file line by line and parses the fields by the
comma separator. We can get some speed improvements in our experiments
by specifying the column types in read.csv, using the colClasses option,
since determining data types consumes some execution time. The load
function reads the data from the RData files created using the save function,
which stores binary representations of R objects. It compresses the size of the
data a lot, but we see that there are more efficient ways of reading data than

loading the RData file.

The second task we set ourselves to benchmark is a left outer join of the
employment data ann2014full, with the data object of the industry industry
codes. The former has 3,556,289 rows and 15 columns, and the latter has
2,469 rows and two columns. They are merged based on the common
variable, industry_code. In a left join, all the rows of ann2014full will be
preserved. For this, the merge commands will use the all.x=T option. The
join function has the type='left' option for a left join. For the data.table
merge, we first convert the data.frame objects to data.table objects,
specifying that each has the same key variable, (think index in a database)
industry_code. The data.table objects are then merged using this key
variable.

There is a bit of new code formatting in this code snippet. We use
plyr::join and dplyr::left_join, rather than just join and left_join.
This style of coding explicitly specifies that we are using a particular function
from a particular package to avoid confusion. Sometimes, this style of coding
is useful when you have functions with the same name in two different
packages that are both loaded in R.

There's more...

The data.table package provides very fast tools for data loading, munging,
and joining. The data.table object is a derivative object of the data.frame
package, and many of the functions in R that input data.frame objects can
also import data.table objects. It is for this reason that the data.table
object becomes your default container for rectangular data.

See also

Hadley Wickham has a very nice exposition on benchmarking that is
part of his online book, available at http://adv-
r.had.co.nz/Performance.html. He promotes the microbenchmark
package for benchmarking purposes.

http://adv-r.had.co.nz/Performance.html

Chapter 6. Driving Visual Analyses with
Automobile Data
In this chapter, we will cover:

Getting started with Jupyter
Exploring Jupyter Notebook
Preparing to analyze automobile fuel efficiencies
Exploring and describing fuel efficiency data with Python
Analyzing automobile fuel efficiency over time with Python
Investigating the makes and models of automobiles with Python

Introduction

In the first chapter on R (Chapter 2, Driving Visual Analysis with Automobile
Data with R), we walked through an analysis project that examined
automobile fuel economy data using the R statistical programming language.
This dataset, available at
http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip, contains fuel
efficiency performance metrics over time for all makes and models of
automobiles in the United States of America. This dataset also contains
numerous other features and attributes of the automobile models other than
fuel economy, providing an opportunity to summarize and group the data so
that we can identify interesting trends and relationships.

Unlike the first chapter on R, we will perform the entire analysis using
Python. However, we will ask the same questions and follow the same
sequence of steps as before, again following the data science pipeline. With
study, this will allow you to see the similarities and differences between the
two languages for a mostly identical analysis.

Here we used mostly pure Python with some help from NumPy and SciPy,
either straight from the Python command line-also known as Read-Eval-
Print Loop (REPL)-or from executable script files. In this chapter, we will
take a very different approach using Python as a scripting language in an
interactive fashion that is more similar to R. We will introduce the reader to
the unofficial interactive environment of Python, IPython, and the Jupyter
notebook, showing how to produce readable and well-documented analysis
scripts. Furthermore, we will leverage the data analysis capabilities of the
relatively new, but powerful Pandas library and the invaluable data frame
data type that it offers. Pandas often allows us to complete complex tasks
with fewer lines of code. The drawback to this approach is that while you
don't have to reinvent the wheel for common data manipulation tasks, you do
have to learn the API of a completely different package, which is Pandas.

The goal of this chapter is not to guide you through an analysis project that

http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip

you have already completed, but to show you how that project can be
completed in another language. More importantly, we want to get you, the
reader, to become more introspective with your own code and analysis. Think
not only about how something is done, but why something is done that way
in that particular language. How does the language shape the analysis?

Getting started with IPython

IPython is the interactive computing shell for Python that will change the
way you think about interactive shells. It brings to the table a host of very
useful functionalities that will most likely become part of your default
toolbox, including magic functions, tab completion, easy access to command-
line tools, and much more. We will only scratch the surface here and strongly
recommend that you keep exploring what can be done with IPython, see
https://ipython.org/Â for more details and options.

Getting ready

If you have completed the installation instructions in the first chapter, you
should be ready to tackle the following recipes. Note that IPython 6.1, a
major release, was launched in May 2017. The IPython session had been run
in March 2017 on an earlier release of the interactive software.Â

How to do it...

The following steps will get you up and running with the IPython
environment:

1. Open up a Terminal window on your computer and type ipython. You
should be immediately presented with the following:

https://jupyter.org/

Note

Note that your version might be slightly different than what is
shown in the preceding command-line output.

2. Just to show you how great IPython is, type in ls, and you would be
greeted with the directory listing! Yes, you have access to common Unix
commands straight from your Python prompt inside the Python
interpreter.

3. Now, let's try changing directories. Type cd at the prompt, hit space, and
now hit Tab. You should be presented with a list of directories available
from within the current directory. Start typing the first few letters of the
target directory, and then, hit Tab again. If there is only one option that
matches, hitting the Tab key automatically will insert that name.
Otherwise, the list of possibilities will show only those names that
match the letters that you have already typed. Each letter that is entered
acts as a filter when you press Tab.

4. Now, type ?, and you will get a quick introduction to and an overview of
IPython's features.

5. Let's take a look at the magic functions. These are special functions that
IPython understands and will always start with the % symbol. The
%paste function is one such example and it is amazing for copying and
pasting Python code into IPython without losing proper indentation. A
simple illustration is to type 2+3 in any text editor and copy it and then
execute %paste in IPython.Â

6. We will try the %timeit magic function that intelligently benchmarks
Python code. Enter the following commands:

In [2]: n=10000
 ...: %timeit range(n)

 ...:

We should get an output like this:

The slowest run took 4.74 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 1.83 mus per loop

Note that the range function in Python 3.x version is the xrange function
from the earlier Python 2.x versions.Â

7. You can also easily run system commands by prefacing the command
with an exclamation mark. Try the following command:

In [3]: !ping www.google.com

You should see the following output:

Pinging www.google.com [216.239.32.20] with 32 bytes of data:
Reply from 216.239.32.20: bytes=32 time=35ms TTL=57
Reply from 216.239.32.20: bytes=32 time=34ms TTL=57
Reply from 216.239.32.20: bytes=32 time=33ms TTL=57
Reply from 216.239.32.20: bytes=32 time=35ms TTL=57

Ping statistics for 216.239.32.20:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 33ms, Maximum = 35ms, Average = 34ms

8. Finally, IPython provides an excellent command history. Simply press
the up arrow key to access the previously entered command. Continue to
press the up arrow key to walk backwards through the command list of
your session and the down arrow key to come forward. Also, the magic
%history command allows you to jump to a particular command
number in the session. Type the following command to see the first
command that you entered:

In [4]: %history 1

The complete screenshot of the IPython session is given below:Â

Now, type exit to drop out of IPython and back to your system Command
Prompt.

How it works...

There isn't much to explain here and we have just scratched the surface of
what IPythonÂ can do. Hopefully, we have gotten you interested in diving
deeper, especially with theÂ wealth of new features offered by IPython 6.0,
including dynamic and user-controllableÂ data visualizations.

See also

IPython at http://ipython.org/
The IPython Cookbook at https://github.com/ipython/ipython/wiki?
path=Cookbook
IPython: A System for Interactive Scientific Computing at
http://fperez.org/papers/ipython07_pe-gr_cise.pdfï»¿

http://zeromq.org/
https://github.com/ipython/ipython/wiki?path=Cookbook
http://fperez.org/papers/ipython07_pe-gr_cise.pdf
http://fperez.org/papers/ipython07_pe-gr_cise.pdf

Learning IPython for Interactive Computing and Data Visualization,
Cyrille Rossant, Packt Publishing, available at
http://www.packtpub.com/learning-ipython-for-interactive-computing-
and-data-visualization/book
The future of IPython at http://www.infoworld.com/print/236429ï»¿

http://www.packtpub.com/learning-ipython-for-interactive-computing-and-data-visualization/book
http://www.infoworld.com/print/236429

Exploring Jupyter Notebook

Jupyter Notebook is the perfect complement to Python.Â In practice, Jupyter
Notebook allows you to intersperse your code with comments and images
and anything else that might be useful. You can use Jupyter Notebooks for
everything from presentations (a great replacement for PowerPoint) to an
electronic laboratory notebook or a textbook.

Getting ready

If you have completed the installation instructions in the first chapter, you
should be ready to tackle the following recipes.

How to do it...

These steps will get you started with exploring the incredibly powerful
Jupyter Notebook environment. We urge you to go beyond this simple set of
steps to understand the true power of the tool:

1. Create a folder at the terminal, say test, with mkdir test, and move into
that folder with cd test.Â

2. Type jupyter notebook Â in the command prompt. You should see
some text quickly scroll by in the terminal window, and then, the
following screen should load in the default browser (for me, this is
Firefox). Note that the URL should be localhost:8888/tree, indicating
that the browser is connected to a server running on the local machine at
port 8888.

3. You should not see any notebooks listed in the browser (note that
Jupyter Notebook files have a .ipynb extension) as Jupyter Notebook
searches the directory you launched it from for notebook files. Let's

create a notebook now. Click on the drop downÂ NewÂ to find option of
Notebook and click on the Python 3 option (it might be different for you
though):

4. A new browser tab or window should open up, showing you something
similar to the following screenshot:

5. From the top down, you can see the text-based menu followed by the
toolbar for issuing common commands, and then, your very first cell,
which should resemble the command prompt in IPython.

6. Place the mouse cursor in the first cell and type 5+5. Next, either
navigate to Cell | Run or press Shift + Enter as a keyboard shortcut to
cause the contents of the cell to be interpreted. You should now see
something similar to the following screenshot. Basically, we just
executed a simple Python statement within the first cell of our first
Jupyter Notebook.

7. Click on the second cell, and then, navigate to Cell | Cell Type |
Markdown. Now, you can easily write markdown in the cell for

documentation purposes.
8. Close the two browser windows or tabs (the notebook and the notebook

browser).
9. Go back to the terminal in which you typed jupyter notebook, hit Ctrl

+ C, then hit Y, and press Enter. This will shut down the Jupyter
Notebook server.

How it works...

For those of you coming from either more traditional statistical software
packages, such as Stata, SPSS, or SAS, or more traditional mathematical
software packages, such as MATLAB, Mathematica, or Maple, you are
probably used to the very graphical and feature-rich interactive environments
provided by the respective companies. From this background, Jupyter
Notebook might seem a bit foreign, but hopefully much more user friendly
and less intimidating than the traditional Python prompt. Furthermore,
Jupyter Notebook offers an interesting combination of interactivity and
sequential workflow that is particularly well suited for data analysis,
especially during the prototyping phases. R has a library called Knitr
(http://yihui.name/knitr/) that offers the report-generating capabilities of
Jupyer Notebook.

When you type in jupyter notebook, you are launching a server running on
your local machine, and Jupyter Notebook itself is really a web application
that uses server-client architecture. The Jupyter Notebook server, as per
ipython.org, uses two-process kernel architecture with ZeroMQ
(http://zeromq.org/) and Tornado. ZeroMQ is an intelligent socket library for
high-performance messaging, helping Jupyter manage distributed compute
clusters among other tasks. Tornado is a Python web framework and
asynchronous networking module that serves Jupyter Notebook's HTTP
requests. The project is open source and you can contribute to the source
code if you are so inclined.

Jupyter Notebook also allows you to export your notebooks, which are
actually just text files filled with JSON, to a large number of alternative
formats using the command-line tool called nbconvert
(http://ipython.org/ipython-doc/rel-1.0.0/interactive/nbconvert.html).

http://yihui.name/knitr/
http://ipython.org
http://zeromq.org/
http://ipython.org/ipython-doc/rel-1.0.0/interactive/nbconvert.html

Available export formats include HTML, LaTex, reveal.js HTML
slideshows, Markdown, simple Python scripts, and reStructuredText for the
Sphinx documentation.

Finally, there is Jupyter Notebook Viewer (nbviewer), which is a free web
service where you can both post and go through static, HTML versions of
notebook files hosted on remote servers (these servers are currently donated
by Rackspace). Thus, if you create an amazing .ipynb file that you want to
share, you can upload it to http://nbviewer.jupyter.org/ and let the world see
your efforts.

There's more...

We will try not to sing too loudly the praises of Markdown, but if you are
unfamiliar with the tool, we strongly suggest that you try it out. Markdown is
actually two different things: a syntax for formatting plain text in a way that
can be easily converted to a structured document and a software tool that
converts said text into HTML and other languages. Basically, Markdown
enables the author to use any desired simple text editor (VI, VIM, Emacs,
Sublime editor, TextWrangler, Crimson Editor, or Notepad) that can
capture plain text yet still describe relatively complex structures such as
different levels of headers, ordered and unordered lists, and block quotes as
well as some formatting such as bold and italics. Markdown basically offers a
very human-readable version of HTML that is similar to JSON and offers a
very human-readable data format.

See also

Jupyter Notebook at http://jupyter.org
The Jupyter Notebook documentation
atÂ jupyter.readthedocs.io/en/latest/install.htmlÂ

http://nbviewer.jupyter.org/
http://jupyter.org/
http://jupyter.readthedocs.io/en/latest/install.html

Preparing to analyze automobile fuel
efficiencies

In this recipe, we are going to start our Python-based analysis of the
automobile fuel efficiencies data.

Getting ready

If you completed the first chapter successfully, you should be ready to get
started.

How to do it...

The following steps will see you through setting up your working directory
and IPython for the analysis for this chapter:

1. Create a project directory called fuel_efficiency_python.
2. Download the automobile fuel efficiency dataset from

http://fueleconomy.gov/feg/epadata/vehicles.csv.zip and store it in the
preceding directory. Extract the vehicles.csv file from the zip file into
the same directory.

3. Open a terminal window and change the current directory (cd) to the
fuel_efficiency_python directory.

4. At the terminal, type the following command:

jupyter notebook

5. Once the new page has loaded in your web browser, click on New
Notebook.

6. Click on the current name of the notebook, which is untitled0, and
enter in a new name for this analysis (mine is
fuel_efficiency_python).

7. Let's use the top-most cell for import statements. Type in the following

http://fueleconomy.gov/feg/epadata/vehicles.csv.zip

commands:

In [5]: import pandas as pd
 ...: import numpy as np
 ...: from ggplot import *
 ...: %matplotlib inline

Then, hit Shift + Enter to execute the cell. This imports both the pandas and
numpy libraries, assigning them local names to save a few characters while
typing commands. It also imports the ggplot library. Please note that using
the from ggplot import * command line is not a best practice in Python
and it pours the ggplot package contents into our default namespace.
However, we are doing this so that our ggplot syntax resembles most closely
the R ggplot2 syntax, which is strongly not Pythonic. Finally, we use a
magic command to tell Jupyter Notebook that we want matploblib graphs to
render in the notebook.

8. In the next cell, let's import the data and look at the first few records:

In [6]: vehicles = pd.read_csv("vehicles.csv")

However, notice that a red warning message appears as follows:

C:\Users\prabhanjan.tattar\AppData\Local\Continuum\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:2717: DtypeWarning: Columns (70,71,72,73,74,76,79) have mixed types. Specify dtype option on import or set low_memory=False.

This tells us that columns 70,71,72,73,74,76, and 79 contain mixed data
types. Let's find the corresponding names using the following commands:

In [7]: column_names = vehicles.columns.values

...: column_names[[70,71,72,73,74,76,79]]

...:

Out[7]: array(['cylinders', 'displ', 'fuelType2', 'rangeA', 'evMotor', 'mfrCode'], dtype=object)

Note

Mixed data types sounds like it could be problematic, so make a
mental note of these column names. Remember, data cleaning

and wrangling often consume 90 percent of project time.

How it works...

With this recipe, we are simply setting up our working directory and creating
a new Jupyter Notebook that we will use for the analysis. We have imported
the Pandas library and very quickly read the vehicles.csv data file directly
into a data frame. Speaking from experience, pandas' robust data import
capabilities will save you a lot of time.

Although we imported data directly from a comma-separated value file into a
data frame, pandas is capable of handling many other formats, including
Excel, HDF, SQL, JSON, Stata, and even the clipboard using the reader
functions. We can also write out the data from data frames in just as many
formats using writer functions accessed from the data frame object.

Using the bound method head that is part of the Data Frame class in pandas,
we have received a very informative summary of the data frame, including a
per-column count of non-null values and a count of the various data types
across the columns.

There's more...

The data frame is an incredibly powerful concept and data structure. Thinking
in data frames is critical for many data analyses yet also very different from
thinking in array or matrix operations (say, if you are coming from MATLAB
or C as your primary development languages).

With the data frame, each column represents a different variable or
characteristic and can be a different data type, such as floats, integers, or
strings. Each row of the data frame is a separate observation or instance with
its own set of values. For example, if each row represents a person, the
columns could be age (an integer) and gender (a category or string). Often,
we will want to select the set of observations (rows) that match a particular
characteristic (say, all males) and examine this subgroup. The data frame is
conceptually very similar to a table in a relational database.

See also

Data structures in pandas at http://pandas.pydata.org/pandas-
docs/stable/dsintro.html
Data frames in R at http://www.r-tutor.com/r-introduction/data-frame

http://pandas.pydata.org/pandas-docs/stable/dsintro.html
http://www.r-tutor.com/r-introduction/data-frame

Exploring and describing fuel efficiency
data with Python

Now that we have imported the automobile fuel efficiency dataset into
Jupyter and witnessed the power of pandas, the next step is to replicate the
preliminary analysis performed in R from the earlier chapter, getting your
feet wet with some basic Pandas functionality.

Getting ready

We will continue to grow and develop the Jupyer Notebook that we started in
the previous recipe. If you've completed the previous recipe, you should have
everythingÂ you need to continue.

How to do it...

1. First, let's find out how many observations (rows) are in our data using
theÂ following command:

In [8]: len(vehicles)
 ...:
Out[8]: 38120

If you switch back and forth between R and Python, remember that in R, the
function is length and in Python, it is len.

2. Next, let's find out how many variables (columns) are in our data using
the following command:

In [9]: len(vehicles.columns)
 ...:
Out[9]: 83
Let's get a list of the names of the columns using the following command:
In [10]: print(vehicles.columns)
 ...:

Index(['barrels08', 'barrelsA08', 'charge120', 'charge240', 'city08',
'city08U', 'cityA08', 'cityA08U', 'cityCD', 'cityE', 'cityUF', 'co2',
'co2A', 'co2TailpipeAGpm', 'co2TailpipeGpm', 'comb08', 'comb08U',
'combA08', 'combA08U', 'combE', 'combinedCD', 'combinedUF', 'cylinders',
'displ', 'drive', 'engId', 'eng_dscr', 'feScore', 'fuelCost08',
'fuelCostA08', 'fuelType', 'fuelType1', 'ghgScore', 'ghgScoreA',
'highway08', 'highway08U', 'highwayA08', 'highwayA08U', 'highwayCD',
'highwayE', 'highwayUF', 'hlv', 'hpv', 'id', 'lv2', 'lv4', 'make',
'model', 'mpgData', 'phevBlended', 'pv2', 'pv4', 'range', 'rangeCity',
'rangeCityA', 'rangeHwy', 'rangeHwyA', 'trany', 'UCity', 'UCityA',
'UHighway', 'UHighwayA', 'VClass', 'year', 'youSaveSpend', 'guzzler',
'trans_dscr', 'tCharger', 'sCharger', 'atvType', 'fuelType2', 'rangeA',
'evMotor', 'mfrCode', 'c240Dscr', 'charge240b', 'c240bDscr',
'createdOn', 'modifiedOn', 'startStop', 'phevCity', 'phevHwy',
'phevComb'],
dtype='object')

The u letter in front of each string indicates that the strings are represented in
Unicode (http://docs.python.org/2/howto/unicode.html)

3. Let's find out how many unique years of data are included in this dataset
and what the first and last years are using the following command:

In [11]: len(pd.unique(vehicles.year))
 ...:
Out[11]: 34

In [12]: min(vehicles.year)
 ...:
Out[12]: 1984

In [13]: max(vehicles["year"])
 ...:
Out[13]: 2017

Note that again, we have used two different syntaxes to reference individual
columns within the vehicles data frame.

4. Next, let's find out what types of fuel are used as the automobiles'
primary fuel types. In R, we have the table function that will return a
count of the occurrences of a variable's various values. In pandas, we
use the following:

In [14]: pd.value_counts(vehicles.fuelType1)

http://docs.python.org/2/howto/unicode.html

 ...:
Out[14]:
Regular Gasoline 26533
Premium Gasoline 10302
Diesel 1014
Electricity 134
Midgrade Gasoline 77
Natural Gas 60
Name: fuelType1, dtype: int64

5. Now if we want to explore what types of transmissions these
automobiles have, we immediately try the following command:

In [15]: pd.value_counts(vehicles.trany)

However, this results in a bit of unexpected and lengthy output:

Out[15]:
Automatic 4-spd 11042
Manual 5-spd 8323
Automatic 3-spd 3151
Automatic (S6) 2684
Manual 6-spd 2448
Automatic 5-spd 2191
Manual 4-spd 1483
Automatic 6-spd 1447
Automatic (S8) 981
Automatic (S5) 827
Automatic (variable gear ratios) 702
Automatic 7-spd 675
Automatic (S7) 270
Auto(AM-S7) 266
Automatic 8-spd 259
Automatic (S4) 233
Auto(AM7) 166
Auto(AV-S6) 153
Automatic (A1) 125
Auto(AM6) 120
Automatic 9-spd 105
Auto(AM-S6) 87
Auto(AV-S7) 80
Manual 3-spd 77
Manual 7-spd 73
Automatic (S9) 29
Auto(AV-S8) 28
Manual 4-spd Doubled 17

Auto(AM5) 12
Automatic (AV-S6) 11
Automatic (S10) 8
Auto(AM-S8) 6
Auto(AM8) 5
Automatic (AV) 4
Automatic (A6) 4
Manual(M7) 3
Auto(L3) 2
Auto(L4) 2
Automatic (AM5) 2
Auto (AV) 2
Auto (AV-S8) 1
Manual 5 spd 1
Auto (AV-S6) 1
Auto(AM-S9) 1
Automatic 6spd 1
Automatic (AM6) 1
Name: trany, dtype: int64

What we really want to know is the number of cars with automatic and
manual transmissions. We notice that the trany variable always starts with
the letter A when it represents an automatic transmission and M for manual
transmission. Thus, we create a new variable, trany2, which contains the first
character of the trany variable, which is a string:

In [16]: vehicles["trany2"] = vehicles.trany.str[0]
 ...: pd.value_counts(vehicles.trany2)
 ...:

The preceding command yields the answer that we wanted or twice as many
automatics as manuals:

Out[16]:
A 25684
M 12425
Name: trany2, dtype: int64

How it works...

In this recipe, we looked at some basic functionality in Python and pandas.
We have used two different syntax's (vehicles['trany'] and
vehicles.trany) to access variables within the data frame. We have also

used some of the core pandas functions to explore the data, such as the
incredibly useful unique and the value_counts function.

There's more...

In terms of the data science pipeline, we have touched on two stages in a
single recipe: data cleaning and data exploration. Often, when working with
smaller datasets where the time to complete a particular action is quite short
and can be completed on our laptop, we will very quickly go through
multiple stages of the pipeline and then loop back, depending on the results.
In general, the data science pipeline is a highly iterative process. The faster
we can accomplish steps, the more iterations we can fit into a fixed time, and
often, we can create a better final analysis.

See also

The pandas API overview at http://pandas.pydata.org/pandas-
docs/stable/api.html

http://pandas.pydata.org/pandas-docs/stable/api.html

Analyzing automobile fuel efficiency over
time with Python

In this recipe, we are going to look at some of the fuel efficiency metrics over
time and in relation to other data points. To do so, we are going to have to
replicate the functionality of two very popular R libraries, which are plyr and
ggplot2, in Python. The split-apply-combine data analysis capabilities that
are so handily covered by the plyr R library are handled equally well, but in
a slightly different fashion by pandas right out of the box. The data
visualization abilities of ggplot2-an R library implementation of the
grammar of graphics-are not handled as readily, as we shall see in this recipe.

Getting ready

If you've completed the previous recipe, you should have almost everything
you need to continue. However, we are going to use a Python clone of the
ggplot2 library for R, which is conveniently named ggplot. If you didn't
complete the entire setup chapter and haven't yet installed the ggplot
package, open up a terminal and type the following:

pip install ggplot (or sudo pip install ggplot)

This works on the Windows machines as well. Wait for the installation to
complete. After you do this, you will have to restart the IPython Notebook
server to be able to import this newly installed ggplot library.

How to do it...

We will dive into the analysis stage with the following steps:

1. Let's start by looking at whether there is an overall trend of how mpg
changes over time on average. We first want to group the data by year:

In [17]: grouped = vehicles.groupby("year")

2. Next, we want to compute the mean of three separate columns by the
previous grouping:

In [18]: averaged = grouped['comb08', 'highway08','city08'].agg([np.mean])

This produces a new data frame with three columns containing the mean of
comb08, highway08, and city08 variables, respectively. Notice that we are
using the mean function supplied by NumPy (np).

3. To make life easier, we will rename the columns and then create a new
column named year, which contains the data frame's index:

In [19]: averaged.columns = ['comb08_mean','highway08_mean','city08_mean']
...: averaged['year'] = averaged.index

Note how easy renaming columns is compared to what we had to do in R!
The columns attribute of the data frame contains the name of the columns and
what we need to modify in order to rename the columns.

4. Finally, we want to plot the results as a scatter plot using the new
ggplot package for the Python library:

In [20]: ggplot(averaged, aes('year', 'comb08_mean')) + geom_point(
...: color='steelblue') + xlab("Year") + ylab("Average MPG"
...:) + ggtitle("All cars")

Refer to the following graph:

This plot might be misleading as hybrid cars with excellent mileage have
recently become more popular. Let's see whether we can screen out these
automobile makes. Astute observers will recognize that this figure does not
include the geom_smooth() method of the matching image in the R chapter.
While the current ggplot library (0.4.7 as of February 11, 2014) has the
potentially equivalent stat_smooth() method, the current version still has
some bugs that caused erroneous results to be plotted (and not shown).

5. To remove hybrid cars, we create three Boolean arrays. The criteria1
array selects those rows of the data frame where fuelType1 is Regular
Gasoline, Premium Gasoline, or Midgrade Gasoline. The criteria2
array makes sure that the rows contain a null for fuelType2, and
criteria3 ensures that the atvType is not Hybrid. We can perform the
logical AND operation over these three Boolean arrays together to select
only the desired rows from the data frame:

In [21]: criteria1 = vehicles.fuelType1.isin(["Regular Gasoline",

 ...: "Premium Gasoline", "Midgrade Gasoline"])
 ...: criteria2 = vehicles.fuelType2.isnull()
 ...: criteria3 = vehicles.atvType != "Hybrid"
 ...: vehicles_non_hybrid = vehicles[criteria1 & criteria2 &
 ...: criteria3]
 ...: len(vehicles_non_hybrid)
 ...:
Out[21]: 34990

6. We group the resulting data frame by year and then compute the mean
combination fuel efficiency for each year, resulting in the following data
frame:

In [22]: grouped = vehicles_non_hybrid.groupby(['year'])
 ...: averaged = grouped['comb08'].agg([np.mean])
 ...: print(averaged)
 ...:

The preceding command results in this output:

mean
year
1984 19.121622
1985 19.394686
1986 19.320457
1987 19.164568
1988 19.367607
1989 19.141964
1990 19.031459
1991 18.838060
1992 18.861566
1993 19.137383
1994 19.092632
1995 18.872591
1996 19.530962
1997 19.368000
1998 19.329545
1999 19.239759
2000 19.169345
2001 19.075058
2002 18.950270
2003 18.761711
2004 18.967339
2005 19.005510
2006 18.786398
2007 18.987512

2008 19.191781
2009 19.738095
2010 20.466736
2011 20.838219
2012 21.407328
2013 22.228877
2014 22.279835
2015 22.424555
2016 22.749766
2017 22.804085

Based on the preceding data, we see that there is still a marked rise in the
average miles per gallon even after eliminating hybrids.

7. The next question that we can ask is whether there have been fewer cars
with large engines built more recently? If this is true, it could explain the
increase in average miles per gallon. First, let's verify that larger engine
cars have poorer miles per gallon. To look at this, we need to dig into
the displ variable that represents the engine displacement in liters.
Remember, pandas gave us a warning about this variable containing
multiple data types, so let's compute the unique displ values:

In [23]: pd.unique(vehicles_non_hybrid.displ)
 ...:
Out[23]:
array([2. , 4.9, 2.2, 5.2, 1.8, 1.6, 2.3, 2.8, 4. , 5. , 3.3,
3.1, 3.8, 4.6, 3.4, 3. , 5.9, 2.5, 4.5, 6.8, 2.4, 2.9,
5.7, 4.3, 3.5, 5.8, 3.2, 4.2, 1.9, 2.6, 7.4, 3.9, 1.5,
1.3, 4.1, 8. , 6. , 3.6, 5.4, 5.6, 1. , 2.1, 1.2, 6.5,
2.7, 4.7, 5.5, 1.1, 5.3, 4.4, 3.7, 6.7, 4.8, 1.7, 6.2,
8.3, 1.4, 6.1, 7. , 8.4, 6.3, nan, 6.6, 6.4, 0.9])

8. We see that there are some values that might not be numeric, including
the nan value. Let's remove all rows from the vehicles_non_hybrid
data frame that have nandispl values and then do the same for the
comb08 variable. In the process, let's use the astype method to ensure
that each value is of type float, just in case:

In [24]: criteria = vehicles_non_hybrid.displ.notnull()
 ...: vehicles_non_hybrid = vehicles_non_hybrid[criteria]
 ...: vehicles_non_hybrid.displ = vehicles_non_hybrid.displ.astype('float')
 ...:

In [25]: criteria = vehicles_non_hybrid.comb08.notnull()
 ...: vehicles_non_hybrid = vehicles_non_hybrid[criteria]
 ...: vehicles_non_hybrid.comb08 = vehicles_non_hybrid.comb08.astype('float')

9. Finally, we will produce a scatter plot of the results again using the
ggplot library:

In [26]: ggplot(vehicles_non_hybrid, aes('displ', 'comb08')) + geom_point(
 ...: color='steelblue') + xlab("Engine Displacement") +ylab(
 ...: "Average MPG") + ggtitle("Gasoline cars")

Refer to the following graph:

The preceding plot seems to confirm a negative relationship between fuel
economy and engine displacement.

Now, have there been fewer cars with large engines made recently?

10. Let's see whether smaller cars were made in later years on average:

In [27]: grouped_by_year = vehicles_non_hybrid.groupby(['year'])
 ...: avg_grouped_by_year = grouped_by_year['displ',
 ...: 'comb08'].agg([np.mean])

11. Next, let's plot both the average displ value and the average comb08
value by year on the same plot to look for trends. To do this, we need to
reshape the avg_grouped_by_year data frame to convert it from the
wide format to the long format:

In [28]: avg_grouped_by_year['year'] = avg_grouped_by_year.index
 ...: melted_avg_grouped_by_year = pd.melt(avg_grouped_by_year,id_vars='year')

Then, let's create our faceted plot:

In [29]: p = ggplot(aes(x='year', y='value', color = 'variable_0'),
 ...: data=melted_avg_grouped_by_year)
 ...: p + geom_point() + facet_wrap("variable_0")

Refer to the following graph:

How it works...

Let's ignore the actual findings of the analysis, as they are the same as the
ones in the chapter using R. The truly interesting part is the numerous
important data analysis techniques that were used in this chapter. Let's break
each technique down individually.

First and foremost, let's take a look at the general data analysis pattern known
as split-apply-combine, which was previously mentioned in the companion R
chapter. When analyzing a dataset, it is often desirable to group the data by
one or more characteristics, perform an operation on the grouped subsets of
data, and then put the results together. In this chapter, we grouped our data by
year, computed averages on different variables, and then combined these
results. In the previous chapter, we used the plyr package by Hadley
Wickham. With plyr, we called the ddply function passing in the data frame
to be analyzed, the characteristic or set of characteristics to group by, and
then the functions to be used on the group data. The ddply function then

returns the resulting data frame. One line of code performs the split-apply-
combine pattern.

The Pandas library in Python takes a slightly different approach and splits up
the functionality that is subsumed in a single function call in plyr. First, we
can group a pandas object such as a data frame by a specified characteristic as
in this line of code-grouped_by_year =
vehicles_non_hybrid.groupby(['year'])-where we are grouping the rows
of the vehicles_non_hybrid data frame by the year variable. Note that we
are not limited to grouping by a single variable and can create groupings with
multiple characteristics (year and car company, for example).

Once we have the grouped_by_year object, we can iterate through the groups
if weÂ wanted to:

for (name, group) in grouped_by_year:
 print name
 print group

This will print out each group name and the resulting data frame. Next, we
use the aggregrate method on the GroupBy object using the mean function
from the NumPy library (np.mean). In the following code, we are choosing to
only aggregate a single variable, which is comb08, from the grouped_by_year
data frame:

averaged = grouped['comb08'].agg([np.mean])

In pandas, this very robust split-apply-combine functionality is built into the
library, and we have only scratched the surface of what it is capable of.

There's more...

We have also used the ggplot package from yhat instead of the venerable
matplotlib. The Grammar of Graphics offers a very concise, although highly
non-Pythonic, way of describing graphs. The back cover of the seminal book,
The Grammar of Graphics, Leland Wilkinson, Springer states that:

"The Grammar of Graphics presents a unique foundation for producing

almost every quantitative graphic found in scientific journals,
newspapers, statistical packages, and data visualization systems. While
the tangible results of this work have been several visualization software
libraries, this book focuses on the deep structures involved in producing
quantitative graphics from data. What are the rules that underlie the
production of pie charts, bar charts, scatterplots, function plots, maps,
mosaics, and radar charts?"

The ggplot2 package in R is one of R's greatest assets, and Python now has a
functioning ggplot clone. Unfortunately, as shown by some of the
experiences in this chapter, the ggplot Python library is not quite feature-
complete at this time.

As the Python ggplot library is still under development (and we had a few
issues with the smoothing functionality), you might be interested to know
that there is a Python library that allows you to use R from within your
Python program. The rpy2 package, at http://rpy.sourceforge.net/rpy2.html,
offers both a low-level and a high-level interface to R from Python. The low-
level interface is somewhat similar to R's C API. The high-level interface
exposes R objects as instances of Python classes. In order to use rpy2, ensure
that you have R installed on your system. Any packages that you call from
Python must be available in R!

See also

Pandas: indexing and selecting data at http://pandas.pydata.org/pandas-
docs/stable/indexing.html
The Matplotlib and the Future of Visualization in Python article at
http://jakevdp.github.io/blog/2013/03/23/matplotlib-and-the-future-of-
visualization-in-python/
The home page of Hadley Wickham at http://had.co.nz/
The ggplot package for Python at http://blog.yhathq.com/posts/ggplot-
for-python.html
More ggplot for Python at http://blog.yhathq.com/posts/aggregating-
and-plotting-time-series-in-python.html
The article The Split-Apply-Combine Strategy for Data Analysis, Hadley
Wickham, Journal of Statistical Software at

http://rpy.sourceforge.net/rpy2.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://jakevdp.github.io/blog/2013/03/23/matplotlib-and-the-future-of-visualization-in-python/
http://had.co.nz/
http://blog.yhathq.com/posts/ggplot-for-python.html
http://blog.yhathq.com/posts/aggregating-and-plotting-time-series-in-python.html

http://www.jstatsoft.org/v40/i01/paper

http://www.jstatsoft.org/v40/i01/paper

Investigating the makes and models of
automobiles with Python

To continue our investigation of this dataset, we are going to examine the
makes and models of the various automobiles more closely, repeating many
of the steps from the previous chapter while translating from R to Python.

Getting ready

If you've completed the previous recipe, you should have everything you
need in orderÂ to continue.

How to do it...

The following steps will lead us through our investigation:

1. Let's look at how makes and models of cars inform us about fuel
efficiency over time. First, let's look at the frequency of makes and
models of cars available in the U.S., concentrating on 4-cylinder cars.
To select the 4-cylinder cars, we first make the cylinders variable
unique to see what the possible values are:

In [30]: pd.unique(vehicles_non_hybrid.cylinders)
 ...:
Out[30]: array([4., 12., 8., 6., 5., 10., 2., 3., 16., nan])

Both 4.0 and 4 are listed as unique values; this fact should raise your
suspicion. Remember, when we imported the data, pandas warned us that
several variables were mixed types, and one of these variables was
cylinders.

2. Let's convert the cylinders variable to float so that we can then easily
subset the data frame:

In [31]: vehicles_non_hybrid.cylinders = vehicles_non_hybrid.cylinders.astype('float')
 ...: pd.unique(vehicles_non_hybrid.cylinders)
 ...:
Out[31]: array([4., 12., 8., 6., 5., 10., 2., 3., 16., nan])
In [32]: vehicles_non_hybrid_4 = vehicles_non_hybrid[(vehicles_non_hybrid.cylinders == 4.0)]

3. Now, let's look at the numbers of makes that have 4-cylinder cars over
the time frame that is available:

In [35]: grouped_by_year_4_cylinder = vehicles_non_hybrid_4.groupby(['year']).make.nunique()
 ...: fig = grouped_by_year_4_cylinder.plot()
 ...: fig.set_xlabel('Year')
 ...: fig.set_ylabel('Number of 4-Cylinder Makes')
 ...: print fig

Note that we have switched from ggplot to matplotlib as we are trying to
plot a series object. In Python, it is considered bad form to have your code
littered with random import statements. Therefore, we will move the import
statement to the top of our IPython Notebook. Remember, if you restart your
IPython Notebook, make sure that you execute the import statements at the
top of the Notebook first so that the rest of your code will run. Refer to the
following graph:

We can see in the preceding graph that there has been a decline in the number
of makes with 4-cylinder engines available since 1980. However, as a caveat,
this plot could be misleading, as we do not know if the total number of
available makes per year has changed over the same period of time.

4. Can we look at the makes that have been available every year of this
study? First, we want to find a list of the automobile makes with 4-
cylinder engines that were present in every year of this study. To do this,
we first compute the unique list of makes per model year:

In [36]: grouped_by_year_4_cylinder = vehicles_non_hybrid_4.groupby(['year'])
 ...: from functools import reduce
 ...:
In [37]: unique_makes = []
 ...: for name, group in grouped_by_year_4_cylinder:
 ...: unique_makes.append(set(pd.unique(group['make'])))
 ...:
 ...: unique_makes = reduce(set.intersection, unique_makes)
 ...: print(unique_makes)
 ...:
{'Nissan', 'Chevrolet', 'Chrysler', 'Toyota', 'Honda', 'Dodge', 'Volkswagen', 'Jeep', 'Ford', 'Subaru', 'Mitsubishi', 'Mazda'}

We find that there are only 12 manufacturers that made 4-cylinder cars every
year during this period.

5. Now, we ask the question of how these car manufacturers' models have
performed over time in terms of fuel efficiency. To do this, we decide to
take the long way. First, we create an empty list that will eventually be
populated by Booleans. We then iterate over each row in the data frame
using the iterrows generator that yields both an index and row (we
choose to do nothing with the index in the loop). We then test whether
the make of the current row is in the unique_makes set computed
previously and append the Boolean to the Boolean_mask set. After the
loop is completed, we subset the data frame to contain only rows with a
make within the set of unique_makes:

In [38]: boolean_mask = []
 ...: for index, row in vehicles_non_hybrid_4.iterrows():
 ...: make = row['make']
 ...: boolean_mask.append(make in unique_makes)
 ...:
 ...: df_common_makes = vehicles_non_hybrid_4[boolean_mask]
 ...:

6. Next, we must group the data frame by both year and make and then
compute the mean for each grouping:

In [39]: df_common_makes_grouped = df_common_makes.groupby(['year',
 ...: 'make']).agg(np.mean).reset_index()

7. Finally, we display the results of our efforts using a faceted plot,
courtesy of ggplot:

In [40]: ggplot(aes(x='year', y='comb08'), data =
 ...: df_common_makes_grouped) + geom_line() + facet_wrap('make')

Refer to the following graph:

How it works...

A lot of the steps were spelled out in detail during the recipe itself, so we
won't belabor the points here. However, there are a few things that are
certainly worth pointing out. First, did you notice the .reset_index() call at
the end of the last split-apply-combine step? The following command shows

this:

df_common_makes.groupby(['year','make']).agg(np.mean).reset_index()

When performing the groupby step, pandas returns the key by which rows
were grouped as an index and not as a simple data column. In the case of
multiple grouping keys, pandas returns a multilevel index. Unfortunately, this
will not work for ggplot, and we need to tell pandas to treat these indices as
data columns with the .reset_index() method.

Second, we used a for loop, iterating over the rows of the data frame to
determine whether the make was in the list of unique_makes of interest. If
this block of code seemed a bit verbose, it is because it was. Pandas has an
incredible amount of functionalities built in, and we could have performed
the row selection using the .isin() method, as shown in the following
command:

test =

 vehicles_non_hybrid_4[vehicles_non_hybrid_4['make'].isin(unique_makes

)]

If there is a data analysis step that you wish to perform on your data frame,
chances are that there is a method that has already been built to do this.

From a performance standpoint, we committed a very obvious sin in the for
loop by appending the loop to a list, thus growing the size of the list with
each iteration. To speed this up, we should have pre-allocated the list to the
size of the number of rows in the data frame filled with false Boolean values.
Preallocating arrays is a very general technique that speeds up code in most
languages; this trick is especially powerful in matplotlib.

To perform the set intersection that we used in order to identify all of the
makes present in every year of the data, we needed the sets Python package
that is part of the Python distribution. Again, we would move this import
statement to the top of our script in order to follow best Python practices.

See also

The matplotlib home page at http://matplotlib.org/
The groupby documentation at http://pandas.pydata.org/pandas-
docs/stable/groupby.htmlï»¿

http://matplotlib.org/
http://pandas.pydata.org/pandas-docs/stable/groupby.html

Chapter 7. Working with Social Graphs
In this chapter, we will cover:

Preparing to work with social networks in Python
Importing networks
Exploring subgraphs within a heroic network
Finding strong ties
Finding key players
Exploring characteristics of entire networks
Clustering and community detection in social networks
Visualizing graphs
Social networks in R

Introduction

Social networks have become a fixture of modern life, thanks to social
networking sites such as Facebook and Twitter. Social networks themselves
are not new, however. The study of such networks dates back to the early
twentieth century, particularly in the fields of sociology and anthropology. It
is their prevalence in mainstream applications that has moved these types of
studies to the purview of data science.

It turns out that social networks are extremely interesting as models for
human behavior. Human civilization stems from tribal societies and as a
result, Dunbar's number-a hypothesis that at any given time we can only
have 150 people in our extended social network-has famously been proven
through the analysis of the most active networks. Latent social networks exist
everywhere, not just in popular web 2.0 applications. We manage our lives
through connections to various networks, and, because of that, we generate a
lot of related, rich data that can be used to make predictions about ourselves
and our relationships.

Networks, like the ones we'll discuss in this chapter, take a relationship-
centered view of the world. By leveraging an existing data structure of
people-to-people relationships (a social network), we can produce analyses
about the larger network with clustering techniques to discover communities,
reveal insights into the role of important members of the graph, and even
generate behavioral predictions through relational inference. These analyses
have a number of practical applications from law enforcement to election
prediction and recommendations to application optimization.

The mathematical underpinnings of these analyses stem from graph theory.
Therefore, the techniques for the analyses in this chapter will focus on the
cardinality, traversal, and clustering of graphs. To introduce these techniques,
we will make use of an excellent Python graph library, NetworkX. We'll go
through several analyses at various levels of the network, such as pairwise
comparisons at the individual level, community detection at the group level,

and cohesion analyses at the network level. Finally, we'll look at visualizing
and drawing our graphs and subgraphs with various tools.

Understanding graphs and networks

The basis for the analyses in this chapter comes from graph theory-the
mathematical study of the application and properties of graphs, originally
motivated by the study of games of chance. Generally speaking, this involves
the study of network encoding and measuring properties of a graph. Graph
theory can be traced back to Euler's work on the Seven Bridges of
KÃ¶nigsberg problem in the year 1735. However, in recent decades, the rise
of the social network has influenced the discipline and particularly with
computer science graph data structures and databases.

Let's start with a point of contention. What is the difference between a
network and a graph? The term graph can be used to imply visual
representations of variables and functions, the mathematical concept of a set
of nodes and edges, or the data structure based on that concept. Similarly, the
term network has multiple definitions; it can be an interconnected system or a
specialized type of mathematical graph. Therefore, either term, social
network or social graph, is appropriate in this case, particularly as we are
referring to the mathematical concept and data structure.

A graph is a symbolic representation of a network that is composed of a set of
vertices (nodes) and their connections (relationships or edges). More
formally, a graph can be defined as: G = (V, E), an entity consisting of a
finite set of nodes denoted by V (vertices) or V(G) and a collection E (edges)
or E(G) of unordered pairs {u, v} where u, v â V. A visual example, as shown
in the following figure, should be familiar to the reader:

Graphs can be either directed or undirected. Directed graphs have ordered
relationships; undirected graphs can be seen as bidirectional directed graphs.
A directed graph in a social network tends to have directional semantic
relationships, for example, friends, where Abe might be friends with Jane, but
Jane might not reciprocate. Undirected social networks have more general
semantic relationships, for example "knows". Any directed graph can easily
be converted to the more general undirected graph. In this case, the adjacency
matrix becomes symmetric, that is every relationship is reciprocal.

Adjacency matrices are two-dimensional graph representations, where each
cell or element (i, j) is 1 if the ith node and jth node are connected; it is 0
otherwise. This is certainly not the most compact manner of storing
information about graphs; a byte must be stored for every pair of nodes, even
if the majority of nodes do not share an edge with most other nodes.
However, this representation is computationally effective and is used for
many graph algorithms. Consider that a node can be represented in this
scheme as a vector of its edges. An example of a small adjacency matrix for
an undirected graph with four nodes is shown in the following figure:

A few final terms will help us in our discussion. The cardinality of vertices is
called the order of the graph, whereas the cardinality of the edges is called the
size. In the graph pictured in the preceding figure, the order is 7 and the size
is 10. Two nodes are adjacent if they share an edge; if this is true, they are
also called neighbors. The neighborhood of a vertex is the set of all vertices
that the vertex is connected to. The degree of a vertex is the size of its
neighborhood, the number of nodes that share an edge with the vertex.

With this in mind, graph problems generally fall into a few categories.
Existence problems attempt to determine if a node, path, or subgraph exists,
particularly if there is a constraint. Construction problems focus on the
construction of a graph, given a set of nodes and paths, within given
constraints. Enumeration problems attempt to determine the list of vertices
and relationships within a set of constraints. Finally, optimization problems
determine the shortest path between two nodes.

Preparing to work with social networks in
Python

One of Python's key advantages that merits repeating is the number of
excellent pre-made packages available for the language; fortunately for us,
network analysis is no exception. This short recipe will walk you through
installing the libraries you'll need for the rest of this chapter.

Getting ready

The required external libraries for the tasks in this chapter are as follows:

NetworkX
matplotlib
python-louvain

How to do it...

We will use the following steps that should be familiar at this point to prepare
for the remaining recipes:

1. Open a new Terminal or Command Prompt and change to your project
directory.

2. If you are using a virtual environment, activate your virtual environment
and type the following:

pip install networkx

If you are not using a virtual environment, you will most likely need to use
sudo, as follows:

sudo pip install networkx

3. Now, we must install the python-louvain package:

pip install python-louvain

How it works...

NetworkX is a well-maintained Python library for the creation, manipulation,
and study of the structure of complex networks. Its tools allow for the quick
creation of graphs, and the library also contains many common graph
algorithms. In particular, NetworkX complements Python's scientific
computing suite of SciPy/NumPy, matplotlib, and Graphviz and can handle
graphs in memory of 10M's of nodes and 100M's of links. NetworkX should
be part of every data scientist's toolkit.

NetworkX and Python are the perfect combination to do social network
analysis. NetworkX is designed to handle data at scale. The core algorithms
that are included are implemented on extremely fast legacy code. Graphs are
hugely flexible (nodes can be any hashable type), and there is an extensive
set of native IO formats. Finally, with Python, you'll be able to access or use
a myriad of datasources from databases on the Internet.

Python-louvain is a small Python library built for a singular purpose, which
is to use the Louvain method for community detection, as described in the
Fast unfolding of communities in large networks paper (Journal of Statistical
Mechanics: Theory and Experiment, 2008 (10)). A C++ implementation is
also available.

There's more...

While we will use NetworkX exclusively in this chapter, there are a number
of excellent alternative social network analysis libraries that are worth
mentioning. First, igraph (http://igraph.org/redirect.html) can be
programmed and used from R, Python, and C/C++, with the underlying tools
built in C/C++ for performance. The second library to take a look at is graph-
tool (http://graph-tool.skewed.de/). Underneath its Python usability, it can
also be implemented in C++, but with the added benefit of leveraging

http://igraph.org/redirect.html
http://graph-tool.skewed.de/

OpenMP for parallelization across multicore machines.

Importing networks

The dataset we will explore in this chapter is fun. It's the Marvel Universe
Social Graph dataset constructed by Cesc RossellÃ³, Ricardo Alberich, and
Joe Miro as part of their research on disordered systems and neural networks
(http://bioinfo.uib.es/~joemiro/marvel.html). They created the network by
compiling characters with the comic books in which they appear; as it turns
out, the network actually mimics a real-world social network. Since then,
there have been many visualizations of, and other mashups using this famous
dataset (as well as extensions). In this recipe, we will import the needed data
into our Python environment.

Getting ready

Once you have installed the needed libraries from the preceding recipe, you
will need to use the dataset provided with the chapter.

How to do it...

Perform the following steps to import the data:

1. In order to get this graph into a NetworkX graph representation, iterate
over the dataset and add edges (which automatically create the nodes)
for each hero pair:

import networkx as nx
import unicodecsv as csv

def graph_from_csv(path):

 graph = nx.Graph(name="Heroic Social Network")

 with open(path, 'rU') as data:
 reader = csv.reader(data)
 for row in reader:

http://bioinfo.uib.es/~joemiro/marvel.html

 graph.add_edge(*row)
return graph

Each row is a (hero, hero) tuple. Using the *row notation, we expand the
tuple so that the function definition is actually graph.add_edge(hero,
hero).

2. The dataset is large, weighing in at 21 MB, and takes a second or two to
load into memory; you can compute the size and the order of the graph
as follows:

>>> graph.order() # graph.number_of_nodes()

6426

>>> graph.size() # graph.number_of_edges()

167219

Keep this function handy; we'll need it to get the graph for most of the rest of
the chapter!

3. The alternate dataset, from which the social network was derived,
includes the comics in which the characters appeared. A slightly
different graph generation mechanism is necessary for this format:

def graph_from_gdf(path):
 graph = nx.Graph(name="Characters in Comics")
 with open(path, 'rU') as data:
 reader = csv.reader(data)
 for row in reader:
 if 'nodedef' in row[0]:
 handler = lambda row,G: G.add_node(row[0],
 TYPE=row[1])
 elif 'edgedef' in row[0]:
 handler = lambda row,G: G.add_edge(*row)
 else:
 handler(row, graph)
return graph

In this tab-separated value (TSV) file, there is a banner that says nodedef or
edgedef before the rows of nodes or edge definitions. While we loop through
each row, we create a handler function, lambda, depending on whether we've

seen the banner. Then, for every row under the banner, we use the defined
handler as we're in the section for either nodes or edges.

4. At this point, we can calculate some quick information for the graph
using built-in methods from NetworkX:

>>> nx.info(graph)
Name: Heroic SociaL Network
Type: Graph
Number of nodes: 6426
Number of edges: 167219
Average degree: 52.0445

Note that the name for the graph was added when we instantiated nx.Graph,
an optional feature that makes it easier to track multiple graphs in your code.

How it works...

Data import can be a challenge in any data science project and graph data can
come in a variety of formats. For this recipe, the data is simple; it is a TSV
file of hero-to-hero connections with the implied knows relationship.

There is also an alternate dataset that expands the knows relationship by
including the source of their relationship, the comic book that the heroes
appear in together. This expansion adds additional hops between the hero-to-
hero network by expanding the comic-to-hero network via appears in
relationships. This expanded network might allow us to compute the strength
of the knows relationships; for example, the more comics that heroes appear
in together, the better they probably know each other. It is interesting to note
that this type of dataset has been shown to be effective at community
discovery and relationship clustering.

The graph_from_gdf function determines whether we're reading edges or
nodes, and it handles each line of the TSV file appropriately by implementing
a new handler via a lambda function when it sees a row banner called
nodedef or edgedef, indicating that the rows below it are nodes or edges,
respectively. This function also gives us the opportunity to create a property
graph.

A property graph extends our current graph definition with the inclusion of
key/value pairs on nodes and edges, and even potentially on the graph itself.
Property graphs are more expressive, and they are the basis of many graph
databases because they can hold more information per node and per
relationship (thus making it a possible replacement for traditional relational
databases). NetworkX also allows you to specify additional properties for
both nodes and edges.

Note

Note the add_node method; additional keyword arguments are
saved as a property. In this case, we set a TYPE property to
determine whether the node is a comic book or a hero. NetworkX
also allows the setting and retrieving of properties in bulk on
nodes, using set_node_attributes (G, name, attributes)
and get_node_attributes(G, name), which return a dictionary
mapping the nodes to the attribute requested (or saving the
attribute to the group of nodes).

Exploring subgraphs within a heroic
network

The graph in the previous recipe, Importing networks, is much too large for
us to get a feel for what is happening at the individual level, although we'll
soon look at analyses that tell us interesting things about populations and
communities. However, in order for us to see something interesting
immediately, let's extract a subgraph to play with. In particular, we'll collect a
subgraph for a particular hero in our dataset. When a subgraph is generated
with a single person or actor as a focal point, it is called an ego network, and,
in fact, the degree of an ego network might be a measure of an individual's
self-worth!

Getting ready

As long as you completed the previous recipe, you will be prepared for this
one.

How to do it...

The following steps will lead you through extracting subgraphs from our
large dataset and visualizing the ego networks:

1. Every social network has as many egos as nodes. The neighbors of an
ego are called alters. The definition of the ego subgraph is bound by an
n-step neighborhood, defining how many hops away from the ego to
include in the subgraph. NetworkX provides a very simple mechanism
to extract an ego graph, as shown in the following command:

>>> ego = nx.ego_graph(graph, actor, 1)

This function returns a subgraph of all the neighbors of the actor node, with a
maximum path length as specified by the third argument.

2. To draw the graph of the ego network, we use the following function:

def draw_ego_graph(graph, character, hops=1):
 """
 Expecting a graph_from_gdf
 """

 # Get the Ego Graph and Position
 ego = nx.ego_graph(graph, character, hops)
 pos = nx.spring_layout(ego)
 plt.figure(figsize=(12,12))
 plt.axis('off')

 # Coloration and Configuration
 ego.node[character]["TYPE"] = "center"
 valmap = { "comic": 0.25, "hero": 0.54, "center": 0.87 }
 types = nx.get_node_attributes(ego, "TYPE")
 values = [valmap.get(types[node], 0.25) for node in
 ego.nodes()]

 # Draw
 nx.draw_networkx_edges(ego, pos, alpha=0.4)
 nx.draw_networkx_nodes(ego, pos,
 node_size=80,
 node_color=values,
 cmap=plt.cm.hot, with_labels=False)

 plt.show()

3. Let's take a look at the ego networks for LONGBOW/AMELIA GREER,
starting with a one-hop network:

>>> graph = graph_from_gdf('comic-hero-network.gdf'))
>>> draw_ego_graph(graph, "LONGBOW/AMELIA GREER")

The preceding commands will give you the following graph:

The preceding figure shows this one-hop ego network, which is derived from
the expanded comic-to-hero social graph. Since there are two different types
of nodes, we have visually colored them differently; orange nodes are
characters and blue nodes are comic books. The ego node, LONGBOW/AMELIA
GREER herself is white.

4. Let's create a two-hop ego network for the same character:

>>> draw_ego_graph(graph, "LONGBOW/AMELIA GREER", 2)

The preceding command will give you the following graph as output:

How it works...

Amelia Greer (also known as Longbow) is part of a mercenary special
operations unit called the Harriers. She appears in two Marvel comics,
particularly The Uncanny X-Men Vol 1 #261 in May of 1990. Her ego
network is very close knit (containing mostly members from the Harriers), as
you can see in the preceding one-hop network figure.

The preceding two-hop network considerably expands the volume of the
network. The black nodes represent the second hop to the next comic book

community of characters. Clusters are readily apparent, even in this small ego
network. Still, even one-hop network can say a lot about group membership
and the importance of an actor. We will talk about how to build such graphs
later on in this chapter.

There's more...

The ego can or cannot be a part of the network. In fact, membership testing
on the ego is not important since the subgraph was generated based on the
neighborhood of the ego! Instead, removal of the ego can show structural
configurations of the network. Consider the social networks shown in the
following figure:

In the preceding figure, the ego is included as part of the graph; the structure
of the network seems unified and cohesive.

As you can see, without the ego, isolations become important, as do obvious
outliers. Aggregating these isolations across egos is how group membership
and communities are discovered. We'll explore this more in the next sections.

Finding strong ties

Currently, our hero network simply measures whether two characters are
connected. This computation is simple; do they appear in the same comic
book together? We assume that in the small temporal space of a comic book,
even cameos mean that the characters have interacted with each other.
However, this does not tell us who the most important relations for a
particular character are.

In order to determine the most important folks in an ego network (or to
determine relative affinity between two actors), we need to determine edge
weights. Since edges represent interaction, affiliation, or social relations,
adding a weight determines the distance between two actors, relative to other
actors with similar connections. Proxies for edge weights in social networks
include:

Frequency, for example, how often two actors communicate
Reciprocity, for example, whether or not the relationship is reciprocal
Type or attributes, for example, married actors have a stronger tie than
college roommates
Structure of the neighborhood, for example, the number of mutual
friends

In our heroic social graph, we'll use the number of comic books in which a
pair of characters appears together as a proxy for the strength of their tie. This
seems to make sense; if one character is a villain that appears in the same
comics as a hero, their relationship is that of a nemesis, it's not a simple
protagonist/antagonist relationship! Another example is that of two heroes
appearing together often. They might be part of a heroic team (for example,
The Avengers) or share a sidekick relationship (for example, Bucky to
Captain America).

Getting ready

If you completed the previous recipes, you should be ready to tackle this one.

How to do it...

The following steps will walk us through finding the strong ties in the
network:

1. In order to compute the ties, we'll recreate the hero network graph from
the comic hero network dataset. Since this represents an entire graph
computation (for example, we will iterate through every node in the
graph), we'll need to use a memory-safe iterator and save the
intermediate data to disk. Here is the complete code; we'll go over it line
by line, as follows:

def transform_to_weighted_heros(comics):
 # Create new graph to fill in
 heros = nx.Graph(name="Weighted Heroic Social Network")
 # Iterate through all the nodes and their properties
 for node, data in graph.nodes(data=True):
 # We don't care about comics, only heros
 if data['TYPE'] == 'comic': continue
 # Add the hero and their properties (this will also update data)
 heros.add_node(node, **data)

 # Find all the heros connected via the comic books
 for comic in graph[node]:
 for alter in graph[comic]:
 # Skip the hero that we're on
 if alter == node: continue

 # Setup the default edge
 if alter not in heros[node]:
 heros.add_edge(node, alter, weight=0.0,
 label="knows")

 # The weight of the hero is the fraction of
 connections / 2
 heros[node][alter]["weight"] += 1.0 /
 (graph.degree(comic) *2)
 return heros

2. Let's see Longbow's social weighted graph now:

def draw_weighted_ego_graph(graph, character, hops=1):
 # Graph and Position
 ego = nx.ego_graph(graph, character, hops)
 pos = nx.spring_layout(ego)
 plt.figure(figsize=(12,12))
 plt.axis('off')

 # Coloration and Configuration
 ego.node[character]["TYPE"] = "center"
 valmap = { "hero": 0.0, "center": 1.0 }
 types = nx.get_node_attributes(ego, "TYPE")
 values = [valmap.get(types[node], 0.25) for node in
 ego.nodes()]
 char_edges = ego.edges(data=True, nbunch=[character,])
 nonchar_edges = ego.edges(nbunch=[n for n in ego.nodes()
 if n != character])
 elarge=[(u,v) for (u,v,d) in char_edges if d['weight'] >=0.12]
 esmall=[(u,v) for (u,v,d) in char_edges if d['weight'] < 0.12]
 print set([d['weight'] for (u,v,d) in char_edges])

 # Draw
 nx.draw_networkx_nodes(ego, pos,
 node_size=200,
 node_color=values,
 cmap=plt.cm.Paired,
 with_labels=False)

 nx.draw_networkx_edges(ego,pos,edgelist=elarge,
 width=1.5, edge_color='b')
 nx.draw_networkx_edges(ego,pos,edgelist=esmall,
 width=1,alpha=0.5,
 edge_color='b',style='dashed')
 nx.draw_networkx_edges(ego,pos,edgelist=nonchar_edges,
 width=0.5,alpha=0.2,style='dashed')
plt.show()

The preceding commands will give you the following graph as output:

As you can see, Longbow shares two strong ties (represented by the heavy
dark blue line), and this makes sense since she is in two comic books with
only two other characters. The other characters she's directly related to have
light blue dashed lines, representing her weaker ties to them.

Note that all characters are connected to the other characters with which they
share ties in the ego network (represented by light grey dashed lines).
Already, we can start to see clustering, as the characters from different comic
books have moved to either side of Longbow's red node. Characters that have
affinities with characters from both comics are in the middle.

How it works...

The transform_to_weighted_heros function is key to this recipe, and we
explain it line by line here. First, we create an empty graph in which to add
our transformation. Note that in NetworkX, there are functions such as
create_empty_graph and Graph.subgraph; however, the former won't
transfer the data that we need and the latter will transfer too much data. We'll
go over each node in the original graph, skipping over comic books. Note that

we'll add heroes twice using the heros.add_node method because every time
we add an edge, it creates the node, if it doesn't exist already. However, to
ensure that we get all the data over, we call add_node for each hero, and it
will simply update the node's properties if it is already in the graph.

Next, we'll connect the heroes together through their comic-book
relationships. We'll gather all the heroes connected to the same comic books
our current hero is in (skipping the current hero to prevent self-loops). If
there is no edge, we'll create a default edge, before adding our weight
computation. The weight we'll assign is related to the number of characters in
a comic book. It stands to reason that if a comic book has more characters in
it, they are more loosely connected. Therefore, we compute our weight as the
inverse of the degree of the comic book, divided by two. The division by two
is required since this is an undirected graph, otherwise we will double all the
weights!

There's more...

Weighted edges are essential to be able to make predictions on a graph,
partially because they allow ranking of paths, but mostly because they reflect
the underlying semantic associations of the social network. Making
predictions relies on relationships that create homophily - this is the tendency
of people with similar interests to gather together, and it leads to the
formation of homogenous groups called clusters. Homophilous ties can be
strong or weak; for instance, folks who go to the same school together
represent a stronger tie than people who live in the same city.

Transitivity is the property of edges that allow us to make predictions. Simply
stated, it offers the ability to perform triadic closures. If nodes A and B are
connected, and A and C are also connected, then it is likely that B and C are
connected too. Transitivity is evidence of the existence of strong ties, but it is
not a necessary or sufficient condition, and it might not be applied equally to
weak ties.

Bridges, on the other hand, are edges that connect nodes across groups.
Bridges facilitate cluster communication, and are usually the product of weak
ties or heterophilous relationships. Knowing and understanding these

properties as they relate to your particular social graph essential for unlocking
key insights and being able to make future predictions about how the graph
might change.

Finding key players

In the previous recipe, Finding strong ties, we began exploring ego networks
and strong ties between individuals in our social network. We started to see
that actors with strong ties with other actors created clusters that centered on
themselves. This leads to the obvious question: who are the key figures in the
graph, and what kind of pull do they have? We'll look at a couple of measures
to determine how important a node is or its centrality to try to discover the
degree centrality, betweenness centrality, closeness centrality, and
eigenvector centrality.

Getting ready

If you completed the previous recipes, you will be ready to start this one.

How to do it...

The following steps will identify key players in this network of comic book
characters:

1. To find the top ten nodes in the heroes network, we compute the nodes'
degree and sort them:

import operator

>>> degrees = sorted(graph.degree().items(), key=operator.itemgetter(1), reverse=True)

>>> for node in degrees: print node

2. Additionally, we compute the percent of nodes in the graph that a node
is connected to; NetworkX provides a helpful function,
degree_centrality, to do this for us. While we're at it, we might as
well also set this as a property for our nodes for easy lookup:

>>> centrality = nx.degree_centrality(graph)

>>> nx.set_node_attribues(graph, 'centrality', centrality)

>>> degrees = sorted(centrality.items(), key=itemgetter(1), reverse=True)

>>> for item in degrees[0:10]: print "%s: %0.3f" % item

The preceding commands give us our top ten key players in the dataset, and I
think it's obvious that they are the most influential characters in the Marvel
universe:

1. CAPTAIN AMERICA: 0.297 (1908)
2. SPIDER-MAN/PETER PAR: 0.270 (1737)
3. IRON MAN/TONY STARK : 0.237 (1522)
4. THING/BENJAMIN J. GR: 0.220 (1416)
5. MR. FANTASTIC/REED R: 0.215 (1379)
6. WOLVERINE/LOGAN : 0.213 (1371)
7. HUMAN TORCH/JOHNNY S: 0.212 (1361)
8. SCARLET WITCH/WANDA : 0.206 (1325)
9. THOR/DR. DONALD BLAK: 0.201 (1289)
10. BEAST/HENRY &HANK& P: 0.197 (1267)

These characters are hugely influential with a high number of connections,
considering the average degree is 52.045! While we're at it, we might as well
create a histogram of the connectedness of the graph. A quick note before I
show you the histogram: NetworkX does have a function,
degree_histogram, which will return a list of the frequencies of degrees.
However, in this case, the list's index is the degree value, and the bin width is
1; this means the length of the list can be very large (Order(len(edges))).
Using graph.degree().values() is a bit more efficient, particularly for
social network graphs, as we'll see next.

3. With the following little snippet, you should now be able to see just how
far from normal our top characters are in terms of influence:

>>> import matplotlib.pyplot as plt
>>> plt.hist(graph.degree().values(), bins=500)
>>> plt.title("Connectedness of Marvel Characters")
>>> plt.xlabel("Degree")
>>> plt.ylabel("Frequency")
>>> plt.show()

The preceding snippet will give you the following graph as output:

4. In fact, you can filter out the number of characters whose node degree is
greater than 500, that is, the top one percent. This filter returns 98.8
percent of characters:

>>> filter(lambda v: v < 500, graph.degree().values())

If you do so, the curve becomes slightly more apparent:

>>> import matplotlib.pyplot as plt
>>> plt.hist(graph.degree().values(), bins=500)
>>> plt.title("Connectedness of Marvel Characters")
>>> plt.xlabel("Degree")
>>> plt.ylabel("Frequency")

The preceding commands will give you the following output:

5. To compute other centrality metrics, we will use NetworkX built-in
functions. To compute betweenness centrality, use the following
functions:

>>> centrality = nx.betweenness_centrality(graph)
>>> normalied = nx.betweenness_centrality(graph, normalized=True)
>>> weighted = nx.betweenness_centrality(graph, weight="weight")

The preceding function allows you to compute betweenness centrality, which
will be discussed later, and can be normalized or weighted.

6. To compute the closeness centrality, we can use the following functions,
which are similar to the betweenness centrality:

>>> centrality = nx.closeness_centrality(graph)
>>> normalied = nx.closeness_centrality(graph, normalized=True)
>>> weighted = nx.closeness_centrality(graph, distance="weight")

7. Finally, to compute the eigenvector centrality, you have two choices
with NetworkX:

>>> centrality = nx.eigenvector_centality(graph)
>>> centrality = nx.eigenvector_centrality_numpy(graph)

8. In order to easily explore these centrality metrics on our graph, let's
create a function that generically prints the top 10 nodes based on the
centrality metric:

def nbest_centrality(graph, metric, n=10, attribute="centrality", **kwargs):
 centrality = metric(graph, **kwargs)
 nx.set_node_attributes(graph, attribute, centrality)
 degrees = sorted(centrality.items(), key=itemgetter(1), reverse=True)
 for idx, item in enumerate(degrees[0:n]):
 item = (idx+1,) + item
 print "%i. %s: %0.3f" % item

9. Now, we can simply use this function with our centrality metric to find
the nbest (by default top 10) nodes according to their centrality. The
usage is as follows:

>>> nbest_centrality(graph, nx.degree_centrality)
>>> nbest_centrality(graph, nx.betweenness_centrality, normalized=True)
>>> nbest_centrality(graph, nx.closeness_centrality)
>>> nbest_centrality(graph, nx.eigenvector_centrality_numpy)

How it works...

Clearly, there are far more minor characters in the Marvel Universe, and 100
or so major characters. Interestingly, this compares favorably with the real
world! There are far more actors with few connections in real-world social
graphs, and relatively few top echelon characters with a lot of ties. We know
this intuitively, and we call the actors in the top one percent of connections
celebrities.

In fact, celebrities are extreme outliers who exert such strong influence on
their social graphs that we tend to call them super nodes. Super nodes have
the property that to a far enough hop distance, all traversals of the graph will
inevitably find their shortest path through a super node. This can be very bad

for computation; even the earlier Longbow graph experienced a huge
computational lag, and we had a tough time drawing the graph because of the
two super nodes Longbow was connected to: Wolverine and Jean Grey.
While it's not only proof of Kevin Bacon's six degrees of separation, dealing
with super nodes is also an important part of graph computation.

On the other end of the scale, we can calculate Dunbar's number for our
social network. Dunbar identified and measured the correlation between
neocortical volume and social group size not only for human communities,
but also for primates. In order to calculate this number, we cannot simply
compute the average degree across all nodes due to the strong left-hand skew
in this dataset. Let's compare the mean, mode, and median as our corollary to
Dunbar's number. Later, we'll look at using weighted relationships to further
induce strong ties:

>>> import numpy as np
>>> import scipy.stats as st
>>> data = np.array(graph.degree().values())
>>> np.mean(data)
52.0445066916
>>> st.mode(data)
(array([11.]), array([254.]))
>>> np.median(data)
20.0

Dunbar's number for comic book heroes appears to be much lower than a
typical social graph, but proportional to natural scale graphs (consider that
your social graph in high school was probably smaller than your adult social
graph). It seems that the heroic Dunbar's number is somewhere between 11
and 20 connections. Could this be because alien or mutant neocortical
volume is less than a human's? Or, is it because our heroes are naturally
isolated given their abilities that set them apart?

There's more...

The most common, and perhaps simplest, technique to find the key actors of
a graph is to measure the degree of each vertex. Degree is a signal that
determines how connected a node is, which can be a metaphor for influence
or popularity. At the very least, the most connected nodes are the ones that

spread information the fastest, or have the greatest effect on their community.
Measures of degree tend to suffer from dilution, and benefit from statistical
techniques to normalize datasets.

The betweenness centrality

A path is a sequence of nodes between a start node and an end node, where
no node appears twice on the path and is measured by the number of edges
included (also called hops). The most interesting path to compute for two
given nodes is the shortest path, for example, the minimum number of edges
required to reach another node, which is also called the node distance.

Note that paths can be of length 0, the distance from a node to itself. Consider
the following graph as an example:

The shortest distance between D and F is the path {D, C, E, F}, which is a
distance of three. On the other hand, the shortest paths from A to E are the
two paths {A, C, E} and {A, B, E}, which share a path length of (highlighted

in purple and red).

Finding the shortest paths between two nodes brings up a question from the
last section. If key nodes are often traversed to find the shortest path, is there
a shortest path-based measure of centrality? The answer is yes. The
betweenness centrality identifies the nodes that are more likely to be in the
shortest path than others. This is extremely useful at discovering not only
strong points in the social graph, but also weak points that will be cut off if a
central node is removed.

The computation for the betweenness centrality for a given node is as
follows. For a node, V, the betweenness centrality is defined as the sum of
the fraction of all the pairs of shortest paths that pass through v. The
betweenness centrality can also be normalized for the number of nodes in the
graph, or weighted to accept edge weights:

>>> centrality = nx.betweeenness_centrality(graph)
>>> normalied = nx.betweenness_centrality(graph, normalized=True)
>>> weighted = nx.betweenness_centrality(graph, weight="weight")

The preceding commands will give you the following output:

When the betweenness centrality is computed for our small example graph, B
and C have good centrality scores (0.1 and 0.433, respectively). This is
because they are in the middle of a large part of the network. E, however, has
a centrality score of 0.6, which is because E connects two different sections
of the network (there are no other paths to G and F).

As before, we can check the betweenness centrality for our heroic graph, and
find the heroes that have the top betweenness centralities:

Note

Note that this computation is extremely expensive and could take
a long time on your computer!

>>> nbest_centrality(graph, nx.betweenness_centrality, normalized=True)

The following is the output:

1. SPIDER-MAN/PETER PAR: 0.074
2. CAPTAIN AMERICA: 0.057
3. IRON MAN/TONY STARK: 0.037
4. WOLVERINE/LOGAN: 0.036
5. HAVOK/ALEX SUMMERS: 0.036
6. DR. STRANGE/STEPHEN: 0.029
7. THING/BENJAMIN J. GR: 0.025
8. HAWK: 0.025
9. HULK/DR. ROBERT BRUC: 0.024
10. MR. FANTASTIC/REED R: 0.024

Compared to the degree centrality results, these numbers are very different.
Spider-Man and Captain America have switched places at numbers one and
two, but still share the top three spots with Iron Man. Wolverine has been
promoted to number four, and Mr. Fantastic and The Thing have been
demoted. Truly interesting, however, are the new appearances of Hawk, Hulk,
Dr. Strange, and Havok to the list, replacing Beast, Thor, The Scarlet Witch,
and The Human Torch, who, while popular, are not as able to link characters
together!

The closeness centrality

Another centrality measure, closeness, takes a statistical look at the outgoing
paths for a particular node, v. What is the average number of hops to reach
any other node in the network from v? This is simply computed as the
reciprocal of the mean distance to all other nodes in the graph, which can be
normalized to n-1 / size(G)-1, where n is all nodes in the neighborhood, if all
nodes in the graph are connected. The reciprocal ensures that nodes that are
closer (for example, fewer hops) score better, for example closer to one as in
other centrality scores:

>>> centrality = nx.closeness_centrality(graph)
>>> normalied = nx.closeness_centrality(graph, normalized=True)
>>> weighted = nx.closeness_centrality(graph, distance="weight")

Again, when we run this metric on our social network of heroes, you should
find that it takes a while to run; however, if you use the normalized method,
the process can be accelerated drastically:

>>> nbest_centrality(graph, nx.closeness_centrality)
1. CAPTAIN AMERICA: 0.584
2. SPIDER-MAN/PETER PAR: 0.574
3. IRON MAN/TONY STARK : 0.561
4. THING/BENJAMIN J. GR: 0.558
5. MR. FANTASTIC/REED R: 0.556
6. WOLVERINE/LOGAN : 0.555
7. HUMAN TORCH/JOHNNY S: 0.555
8. SCARLET WITCH/WANDA : 0.552
9. THOR/DR. DONALD BLAK: 0.551
10. BEAST/HENRY &HANK& P: 0.549

Once again, we return to our original list, obtained via the degree centrality.
In this case, Kevin Bacon's rule applies. These very popular super node
celebrities are going to have the most reach, that is, they have the ability to
get to all other nodes in the fastest amount of time. Things have changed for
our smaller graph, however:

Here, we see that C and E are the most central nodes in terms of closeness;
they can reach all other nodes equally. B is less close than C and E, but fares
pretty well, and A, because it has two connections, does slightly better than
D, G, or F at being able to reach all other nodes in the network.

The eigenvector centrality

The eigenvector centrality of a node, v, is proportional to the sum of the
centrality scores of its neighbors. For example, the more important people
you are connected to, the more important you are. This centrality measure is
very interesting because an actor with a small number of hugely influential
contacts might outrank ones with many more mediocre contacts. For our
social network, it will hopefully allow us to get underneath the celebrity
structure of heroic teams and see who actually is holding the social graph
together.

To compute the eigenvector centrality, calculate the argmax of the
eigendecomposition of the pairwise adjacency matrix of the graph. The ith

element in the eigenvector gives the centrality of the ith node. If you're
familiar with Google's PageRank, then this should sound familiar, and in
fact, PageRank is a modified eigenvector centrality measure, where instead of
computing against an adjacency matrix, Google uses probabilities and
computes eigendecomposition across a stochastic matrix.

Adjacency matrices are two-dimensional matrices where each node's vector is
a flag indicating if it and the other node share an edge. Undirected graphs
always have symmetric adjacency matrices, while directed graphs can be
more complex. For our simple graph example in this section, here is the
adjacency matrix:

However, we won't implement the algorithm to compute the eigenvector
centrality, instead, we will rely on the many graph algorithms already built
into NetworkX. In this case, we have two choices to compute the eigenvector
centrality:

>>> centrality = nx.eigenvector_centality(graph)
>>> centrality = nx.eigenvector_centrality_numpy(graph)

The first choice uses the power method to find the eigenvector, and will only

run up to the preset maximum number of iterations, offering no guarantee of
convergence. The second choice will use the NumPy eigenvalue solver. You
should use the second algorithm whenever possible to ensure a complete
result. Why should you, you might ask? The NumPy version will continue to
run until convergence, which means it has the possibility of getting stuck
depending on the input data. The NumPy version can also be made to overfit
the solution. However, the number one reason for which you'd use the power
method is speed; very typically, the power method will solve the eigenvalue
faster than the NumPy method does because of the fixed number of iterations.
These properties of the solver, however, are all completely dependent on the
size of the graph (the input data). For larger graphs, you might be forced to
use the power method because anything else will become intractable.

Note that there are also corresponding pagerank and pagerank_numpy
module functions to compute these scores. Let's see how our heroes did:

>>> nbest_centrality(graph, nx.eigenvector_centrality_numpy)
1. CAPTAIN AMERICA: 0.117
2. IRON MAN/TONY STARK: 0.103
3. SCARLET WITCH/WANDA: 0.101
4. THING/BENJAMIN J. GR: 0.101
5. SPIDER-MAN/PETER PAR: 0.100
6. MR. FANTASTIC/REED R: 0.100
7. VISION: 0.099
8. HUMAN TORCH/JOHNNY S: 0.099
9. WOLVERINE/LOGAN: 0.098
10. BEAST/HENRY &HANK& P: 0.096

Once again, there is some upheaval in our top 10 list! Captain America takes
the top spot again, but Spider-Man loses more than just a place, dropping half
way down the list. The Thing, Scarlet Witch, and Iron Man move up the
list, and, as a surprise, a new actor, Vision, moves onto the list.

Our smaller graph has now ranked our nodes a bit more strongly:

Now, B and C are the most strongly ranked nodes. E is also highly ranked,
but it is not as central as before, and A is more central than it was.
Additionally, F, D, and G have moved above zero for their centrality score,
which can be important when determining thresholds.

Deciding on centrality algorithm

So, which measure of centrality should you use? Well, it depends on what
you're looking for, as each centrality mechanism is designed to deal with
different features of social networks. The following are a few measures of
centrality:

Degree: This is a measure of popularity, and it is useful in determining
nodes that can quickly spread information to a localized area, for
example, the neighborhood. Think celebrities; these are nodes that can
reach many people directly.
Betweenness: This shows which nodes are likely pathways of
information, and can be used to determine where the graph will break

apart if the node is removed. It is also used to show the direct path to
other clusters or groups in the network.
Closeness: This is a measure of reach, that is, how fast information will
spread to all other nodes from this particular node. Nodes with the most
central closeness enjoy short durations during broadcast communication.
Eigenvector: This is a measure of related influence. Who is closest to
the most important people in the graph? This can be used to show the
power behind the scenes, or to show relative influence beyond
popularity.

For many analyses, all measures of closeness can be used to achieve critical
results for a single social network!

Exploring the characteristics of entire
networks

In the next set of recipes, we will characterize our social network as a whole,
rather than from the perspective of individual actors. This task is usually
secondary to getting a feel of the most important nodes, but it is a chicken
and an egg problem; determining the techniques to analyze and splitting the
whole graph can be informed by key player analyses, and vice versa.

Getting ready

If you completed the previous recipes, you will be ready to proceed with this
one.

How to do it...

The following steps will walk us through our first exploration of graph
characteristics at the level of the whole graph:

1. Let's compute both the density of the entire network and that of the ego
graphs:

>>> nx.density(graph)
0.00810031232554
>>> ego = nx.ego_graph(graph, "LONGBOW/AMELIA GREER")
>>> nx.density(ego)
0.721014492754

As you can see, our heroic social network is not very dense; it's not very
cliquish as a whole. However, Longbow's social network is very dense and
extremely cliquish. Typically speaking, density is used to compare subgraphs
of the entire social network (like ego graphs), rather than as a model for how
a particular graph will behave by itself.

2. Graphs can also be analyzed in terms of distance (the shortest path
between two nodes). The longest distance in a graph is called the
diameter of the social graph, and it represents the longest information
flow along the graph. Typically, less dense (sparse) social networks will
have a larger diameter than more dense networks. Additionally, the
average distance is an interesting metric as it can give you information
about how close nodes are to each other:

>>> for subgraph in nx.connected_component_subgraphs(graph):
... print nx.diameter(subgraph)
... print nx.average_shortest_path_length(subgraph)

diameter: 5
average distance: 2.638

Note that our heroic social graph is not completely connected, there are some
isolated subgraphs, and therefore, we use the
nx.connected_component_subgraphs generator to capture each subgraph.
You can test if the social graph is connected with nx.is_connected(G) and
determine the number of components via
nx.number_connected_components. In the heroic social graph, there are four
components, but only two have a significant number of nodes.

3. Finally, we can compute the reciprocity of the network, that is, the ratio
of the number of relationships that are reciprocated (for example, if there
is a bidirectional link) to the total number of relationships in the social
network. Currently, there is no built-in NetworkX method to perform
this computation. However, this methodology will work, using the
NetworkX.DiGraph subclass of Graph:

>>> unigraph = digraph.to_undirected()
>>> return len(unigraph.edges()) / len(digraph.edges())

The reciprocal flag in the to_undirected method ensures that only edges that
appear in both directions will be kept.

This method will only work for directed graphs. Unfortunately, our heroic
network is completely reciprocal since we use the known relationship, and it
has a reciprocity of 1.00, as a result.

How it works...

In this recipe, we examined three different graph characteristics. The density
of a network is the ratio of the number of edges in the network to the total
number of possible edges in the network. The possible number of edges for a
graph of n vertices is n(n-1)/2 for an undirected graph (remove the division
for a directed graph). Perfectly connected networks (every node shares an
edge with every other node) have a density of 1, and are often called cliques.

Graphs can also be analyzed in terms of distance (the shortest path between
two nodes). The longest distance in a graph is called the diameter of the
social graph, and it represents the longest information flow along the graph.
Typically, less dense (sparse) social networks will have a larger diameter than
more dense networks. Additionally, the average distance is an interesting
metric as it can give you information about how close nodes are to each
other.

The last social network measure we'll discuss is reciprocity. This is the ratio
of the number of relationships that are reciprocated (for example, there is a
bidirectional link) to the total number of relationships in the social network.
This only makes sense for directed graphs. For example, the Twitter social
network is a directed graph; you can follow others, but this does not
necessarily mean that they will also follow you. Since our social network of
heroes is semantically undirected, we cannot perform this computation.

Clustering and community detection in
social networks

Graphs exhibit clustering behavior, and identification of communities is an
important task in social networks. A node's clustering coefficient is the
number of triadic closures (closed triples) in the node's neighborhood. This is
an expression of transitivity. Nodes with higher transitivity exhibit higher
subdensity, and if completely closed, form cliques that can be identified as
communities. In this recipe, we will look at clustering and community
detection in social networks.

Getting ready

You will again need NetworkX and, for the first time in this chapter, the
python-louvain library.

How to do it...

These steps will guide you through the detection of communities within
social networks:

1. Let's actually get into some clustering. The python-louvain library uses
NetworkX to perform community detection with the louvain method.
Here is a simple example of cluster partitioning on a small, built-in
social network:

G = nx.karate_club_graph()

#first compute the best partition
partition = community.best_partition(G)

#drawing
pos = nx.spring_layout(G)
plt.figure(figsize=(12,12))

plt.axis('off')

nx.draw_networkx_nodes(G, pos, node_size=200, cmap=plt.cm.RdYlBu, node_color=partition.values())
nx.draw_networkx_edges(G,pos, alpha=0.5)
plt.savefig("figure/karate_communities.png")

The following is the resulting graph with shades of grey and/or colors
representing different partitions:

This is pretty neat! We can see there are yellow, light blue, and dark red
cliques, but dark blue is pretty homogenous. We'll talk more about how to
create graph visualizations with matplotlib later.

2. To partition our comic book characters, we'll add their partitions to each
of their nodes; we'll then look at the relative sizes of each partition:

>>> graph = graph_from_csv(HERO_NETWORK)
>>> partition = community.best_partition(graph)
>>> print "%i partitions" % len(set(partition.values()))

25 partitions
>>> nx.set_node_attributes(graph, 'partition', partition)

As you can see, the louvain method has discovered 25 communities without
our social graph.

3. To examine the relative size of each community, a histogram view may
be helpful. To create the histogram, add the following function to your
file:

import matplotlib.pyplot as plt

def communities_histogram(graph):
graph, partition = detect_communities(graph)
 numbins = len(partition.values())

 plt.hist(partition.values(), bins=numbins), color="#0f6dbc")
 plt.title("Size of Marvel Communities")
 plt.xlabel("Community")
 plt.ylabel("Nodes")

 plt.show()

This should produce the following figure:

There are three major communities containing over a thousand nodes each.
However, we also have eight medium-size communities around 400 actors
strong. The other communities are much smaller, but it does appear that the
Marvel social graph is indeed a real-world and small-world graph, much like
the natural social networks observed in human culture!

4. An alternate, area-based approach to visualizing the size of the Marvel
communities is to use a bubble chart. The area of each circle represents
the size of each community. Graphs such as the following are often used
to collapse large graphs into subgraphs based on community. To create
this code, add the following function to your file:

def communities_bubblechart(graph):
graph, partition = detect_communities(graph)

parts = defaultdict(int)
for part in partition.values():

 parts[part] += 1

bubbles = nx.Graph()
for part in parts.items():
 bubbles.add_node(part[0], size=part[1])
pos = nx.random_layout(bubbles)
plt.figure(figsize=(12,12))
plt.axis('off')

nx.draw_networkx_nodes(bubbles, pos,
alpha=0.6, node_size=map(lambda x: x*6, parts.
 values()),
node_color=[random.random() for x in parts.values()],
cmap=plt.cm.RdYlBu)

plt.show()

When run, this code should produce the following figure for our Hero
network:

How it works...

NetworkX has several mechanisms to compute clusters:

>>> nx.transitivity(graph)
0.194539747093
>>> nx.average_clustering(graph)
0.774654121711

The nx.transitivity function uses the nx.triangles function to compute
the ratio of the number of triangles to the number of possible triangles. The
nx.clustering function computes the clustering coefficient for each node,
and the nx_average_clustering function computes the average coefficient
for the graph. Higher transitivity and clustering coefficients mean that the
graph exhibits the small world effect.

The small world is a network that appears random, but it has a high
transitivity and a short average path length. This is a very common structure
for social networks because the semantics of modern networks have strong
ties and, therefore, strong transitivity. This essentially means that there are a
series of large clusters with few bridge nodes. The heroes' social network
exhibits both the small-world effect as well as a preferential attachment; the
majority of new edges are to nodes with an already high degree, thus creating
a long-tail, left-skewed distribution as we've seen in our graph.

There's more...

The Louvian method is a greedy optimization method that partitions the
network, and optimizes the modularity of each network partition. First, the
method identifies small communities by attempting to optimize local
modularity, and then it aggregates the nodes belonging to the same
community and performs the process again. In this way, a hierarchical data
structure of communities is returned. The method is simple, efficient, and
works against large networks of millions of nodes with billions of links.

The original method was developed by Etienne Lefebvre at UCL (Louvain-
la-Neuve); it was then co-authored and improved along with Vincent
Blondel, Jean-Loup Guillaume, and Renaud Lambiotte. It is the "Louvain
method" because the method is devised when all the members of the team
were at the UniversitÃ© catholique de Louvain. Together, the authors have
created a Python method to compute these hierarchical communities, a
method that depends on NetworkX. The basic detection algorithm is as

follows:

import community
import networkx as nx
def detect_communities(graph):
 partition = community.best_partition(graph)
nx.set_node_attributes(graph, 'partition', partition)
return graph, partition

This function expects an nx.Graph and uses the community module to
compute the best root partition. The partition is hierarchical, so to get the
subcommunities, we simply iterate over the parts in the partition and assign
the nodes in our graph an attribute called partition, which identifies a node
with their community. The function then returns both the modified graph and
the partition to use in visualization.

Visualizing graphs

Throughout this chapter, we have been visualizing social networks to help
develop our understanding and intuition around graphs. In this recipe, we dig
a little bit deeper into graph visualization.

Getting ready

Ensure that you have NetworkX and matplotlib installed.

How to do it...

Complete this list of steps to gain a better understanding of graph
visualization in Python:

1. NetworkX wraps matplotlib or graphviz to draw simple graphs using the
same charting library that we saw in the previous chapter. This is
effective for smaller-size graphs, but with larger graphs, memory can
quickly be consumed. To draw a small graph, simply use the
networkx.draw function, and then use pyplot.show to display it:

>>> import networkx as nx
>>> import matplotlib.pyplot as plt
>>> nx.draw(graph)
>>> plt.show()

2. There is, however, a rich drawing library underneath that lets you
customize how the graph looks and is laid out with many different
layout algorithms. Let's take a look at an example using one of the social
graphs that comes with the NetworkX library, the Davis Southern Club
Women graph:

import networkx as nx
import matplotlib.pyplot as pl

Generate the Graph
G=nx.davis_southern_women_graph()
Create a Spring Layout
pos=nx.spring_layout(G)

Find the center Node
dmin=1
ncenter=0
for n in pos:
 x,y=pos[n]
d=(x-0.5)**2+(y-0.5)**2
if d<dmin:
 ncenter=n
 dmin=d

3. Next, we'll colorize the graph. First, we have to determine the center
node, as we'll color this the darkest. Then, all nodes that are farther away
will be colored lighter, until they become white. The spring layout has
already determined the (x, y) coordinates for each node, so it's simple to
compute the Euclidean distance of each node to the center of the graph
(the point (0.5, 0.5), in this case), and find the node that has the
lowest distance. Once determined, we compute the number of hops (for
example, the path length) of every node to the center node. The
nx.single_source_shortest_path_length function returns a
dictionary of nodes and their distance to the node supplied as an
argument. We will then use these distances to determine colors:

p=nx.single_source_shortest_path_length(G,ncenter)

4. Up next, it's time to draw the graph. We create a matplotlib figure, and
then draw the edges using the NetworkX draw function. Then, we draw
the nodes. This function uses a colormap (the cmap argument) to
determine the range of colors to use, determined by the hop distance:

plt.figure(figsize=(8,8))
nx.draw_networkx_edges(G,pos,nodelist=[ncenter],alpha=0.4)
nx.draw_networkx_nodes(G,pos,nodelist=p.keys(),
 node_size=90,
 node_color=p.values(),
 cmap=plt.cm.Reds_r)

plt.show()

Calling this function will result in a graph as shown in the following figure:

How it works...

In the preceding code, we create a graph, G, via the
davis_southern_women_graph function, one of the many built-in graph
generation functions that is included with NetworkX. We then find the
position of every node in G using a layout. Layouts are algorithms that are
designed to determine where nodes are placed on the graph to create an
effective visualization. NetworkX comes with five positioning algorithms, by
default. Circular layouts position nodes in a circle, and shell layouts position
nodes in concentric circles. Random layouts uniformly distribute the nodes,
and the spectral layout positions using the eigenvectors of the Laplacian
graph.

The spring layout is perhaps the most common. Spring layouts are a force-
directed layout, which means each node repulses other nodes around it, while

edges hold them together. All the nodes are dropped onto the graph, and the
repulsion/attraction is computed in a recursive manner. For each iteration,
nodes will repulse and attract each other into a stable layout. There are
several force-directed algorithms, but NetworkX uses the Fruchterman-
Reingold algorithm.

Social networks in R

The purpose of this brief section is to help the reader carry out the tasks done
earlier in the chapter using the R statistical software. Luke (2015) is a
comprehensive account of dealing with social networks in R. We will begin
with a very simple and arbitrary social network and we will then consider the
Bali terrorist network in detail.

Using a simple and arbitrary social network, we set the ball rolling related to
R implementation. Simple and useful functions are taken up first. The next
social network used is detailed in the following.

Bali Terrorist Network, Stuart Koschade's, PhD thesis available at
http://eprints.qut.edu.au/16591/ deals with the Jemaah Islamiyah 2002 Bali
Terrorist Network. The ties here represent contacts among the Bali terrorist
cell. The dataset consists of ordinal variable as an edge characteristic, IC,
which measures the frequency and duration of the contact with one indicating
a weak relationship, and progressively indicating better relationships, with
five indicating the strongest relationship. Technically, the R network object
Bali.rda is available at the Luke's GitHub link
https://github.com/DougLuke/UserNetR as also his books R package
UserNetR. However, we simply provide the reader with the required rda file.

The R packages that are generally useful in analysis of social networks are
sna, statnet, network, and igraph. For more details, refer to Luke (2015).

Getting ready

The required R packages for carrying out the tasks in this recipe are sna,
statnet, network, and igraph. The simple way to install these packages in R
is running the command
install.packages(c("sna","statnet","network","igraph")). The reader
would also be required to have the Bali.rda file in the current working
directory.

http://eprints.qut.edu.au/16591/
https://github.com/DougLuke/UserNetR

How to do it...

1. The first task is to load the required libraries:

library(statnet,quietly=TRUE)
library(network,quietly=TRUE)

The purpose of specifying the option quietly=TRUE is that a lot of comments
are printed to the console and we can offset that with this option.
Operationally, it makes no difference whether we use this option or not.

2. Next, we specify a matrix with four rows and columns, a square matrix
as expected, which will be then used to set up a network:

netmat1 <- rbind(c(0,1,1,0),
 c(1,0,1,0),
 c(1,1,0,1),
 c(0,0,1,0))
rownames(netmat1) <- c("A","B","C","D")
colnames(netmat1) <- c("A","B","C","D")
netmat1

3. A consequence is the following output in the R console:

> netmat1
A B C D
A 0 1 1 0
B 1 0 1 0
C 1 1 0 1
D 0 0 1 0

4. The matrix will be used to set up the social network as the next step.
5. The matrix netmat1 is transformed into a network using the same named

function and package. The elementary functions are also applied on the
network object to get the basic characteristics of the network:

net1 <- network(netmat1,matrix.type="adjacency")
class(net1)
summary(net1)
network.size(net1)
network.density(net1)
components(net1)

gplot(net1, vertex.col = 2, displaylabels = TRUE)

The R output in the console is as in the following:

> net1 <- network(netmat1,matrix.type="adjacency")
> class(net1)
[1] "network"
> summary(net1)
Network attributes:
vertices = 4
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges = 8
missing edges = 0
non-missing edges = 8
density = 0.6666667
Vertex attributes:
vertex.names:
character valued attribute
4 valid vertex names
No edge attributes
Network adjacency matrix:
 A B C D
A 0 1 1 0
B 1 0 1 0
C 1 1 0 1
D 0 0 1 0
> network.size(net1)
[1] 4
> network.density(net1)
[1] 0.6666667
> components(net1)
Node 1, Reach 4, Total 4
Node 2, Reach 4, Total 8
Node 3, Reach 4, Total 12
Node 4, Reach 4, Total 16
[1] 1
> gplot(net1, vertex.col = 2, displaylabels = TRUE)

Executing the preceding R code chunk at the console, we can set up and
inspect various facets of the network. The function network helps us to
convert the matrix netmat1 to a (social) network net1 and this confirmation
is provided by the line class(net1) whose output says that the class of the

object is indeed a network. Next, the summary function tells us that the
network tells us that we have 4vertices in net1, the network is directed
one, and that there are 8 total edges, also the number of 1's in the netmat1
matrix. The network net1 size and density are respectively 4 and 0.6666667.
The gplot function from the sna package helps in visualizing the network:

We will next look at a more complex and practical network and analyze it in
R. The network is the Bali terrorist network and its explanation was given
earlier. The Bali.rda file is taken from Luke's package, UserNetR . First, the
network is imported in R and then we carry out the summary statistics as with
the net1 network.

6. Load the Bali network and carry out the basic summary as follows:

load("Bali.rda")
class(Bali)
Bali
Basic Properties
network.size(Bali)
network.density(Bali)
VIsualization
windows(height=30,width=30)

gplot(Bali,vertex.col=2, displaylabels = TRUE)

For brevity purposes, we give only the graphical output as the rest of the
interpretation is the same as with network net1:

7. The matrix form of the Bali network can be obtained as follows:

Bali_Matrix <- as.matrix(Bali,matrix.type="adjacency")
Bali_Matrix[1:6,1:6]

The output would be as follows:

Muklas Amrozi Imron Samudra Dulmatin Idris
Muklas 0 1 1 1 1 1
Amrozi 1 0 0 1 0 1
Imron 1 0 0 1 1 1
Samudra 1 1 1 0 1 1
Dulmatin 1 0 1 1 0 1
Idris 1 1 1 1 1 0

Manipulations! It is very important to be able to do basic manipulations and
we would restrain by addressing one simple task of deleting a single vertex.

8. The graph net1 is first converted to the class igraph as netg, and then it
is visualized with the plot function. The vertex D is then deleted and a
new graph object, netg_del_d, is created and visualized. The output
follows the following R program:

netg <- asIgraph(net1)
par(mfrow=c(1,2))
plot(netg,vertex.label=LETTERS[1:5])
netg_del_d <- delete.vertices(netg,v=5)
plot(netg_del_d,vertex.label=LETTERS[c(1:3,5)])

The identification of strong players and ties can be identified in R using the
functions degree, closeness, and betweenness.

9. Applying the functions degree, closeness, and betweenness, we get an
understanding of the Bali network through the next R program segment:

Bali %v% 'vertex.names'
sna::degree(Bali,gmode="graph")
closeness(Bali,gmode="graph")
betweenness(Bali,gmode="graph")

The output of the preceding program is as follows:

> Bali %v% 'vertex.names'
[1] "Muklas" "Amrozi" "Imron" "Samudra" "Dulmatin" "Idris"

[7] "Mubarok" "Husin" "Ghoni" "Arnasan" "Rauf" "Octavia"
[13] "Hidayat" "Junaedi" "Patek" "Feri" "Sarijo"

> degree(Bali,gmode="graph")
[1] 9 4 9 15 9 10 3 9 9 5 5 5 5 5 9 6 9
> closeness(Bali,gmode="graph")
[1] 0.6957 0.5517 0.6957 0.9412 0.6957 0.7273 0.5333 0.6957 0.6957
[10] 0.5714 0.5714 0.5714 0.5714 0.5714 0.6957 0.4848 0.6957
> betweenness(Bali,gmode="graph")
[1] 2.3333 0.3333 1.6667 61.1667 1.6667 6.1667 0.0000 1.6667
[9] 1.6667 0.0000 0.0000 0.0000 0.0000 0.0000 1.6667 0.0000
[17] 1.6667

Network cluster identification is an important task in network analysis. In the
next step, we use appropriate functions to get the desired answers.

10. First convert the network to the igraph function. Apply the functions
clique.number, cliques, and largest.cliques on the network to
identify and separate the clusters:

Balig <- asIgraph(Bali)

clique.number(Balig)
 cliques(Balig,min=8)
 largest.cliques(Balig)

The desired output is the following:

> Balig <- asIgraph(Bali)
> clique.number(Balig)
[1] 9
> cliques(Balig,min=8)
[[1]]
+ 8/17 vertices:
[1] 1 3 4 5 6 8 9 15
[[2]]
+ 8/17 vertices:
[1] 1 3 4 5 6 8 9 17
[[3]]
+ 8/17 vertices:
[1] 1 3 4 5 6 8 15 17
[[4]]
+ 8/17 vertices:
[1] 1 3 4 5 6 9 15 17

[[5]]
+ 8/17 vertices:
[1] 1 3 4 5 8 9 15 17
[[6]]
+ 8/17 vertices:
[1] 1 3 4 6 8 9 15 17
[[7]]
+ 8/17 vertices:
[1] 1 3 5 6 8 9 15 17
[[8]]
+ 8/17 vertices:
[1] 1 4 5 6 8 9 15 17
[[9]]
+ 8/17 vertices:
[1] 3 4 5 6 8 9 15 17
[[10]]
+ 9/17 vertices:
[1] 1 3 4 5 6 8 9 15 17
> largest.cliques(Balig)
[[1]]
+ 9/17 vertices:
[1] 4 6 1 3 5 8 9 15 17

How it works...

The R network packages have simplified most of the tasks and they help in
avoiding the need of writing complex codes. We saw how the R packages
sna, igraph, intergraph, statnet, and network are useful in setting up and
analyzingg social networks. We began with visualizing a simple network and
then obtained the summaries. The task of subsetting a subnetwork and
visualizing it gives nice early insights while we were also able to understand
the interrelationships between vertex/edges and sub-networks within a
network.

Chapter 8. Recommending Movies at Scale
(Python)
In this chapter, we will cover the following recipes:

Modeling preference expressions
Understanding the data
Ingesting the movie review data
Finding the highest-scoring movies
Improving the movie-rating system
Measuring the distance between users in the preference space
Computing the correlation between users
Finding the best critic for a user
Predicting movie ratings for users
Collaboratively filtering item by item
Building a non-negative matrix factorization model
Loading the entire dataset into the memory
Dumping the SVD-based model to the disk
Training the SVD-based model
Testing the SVD-based model

Introduction

From books to movies to people to follow on Twitter, recommender systems
carve the deluge of information on the internet into a more personalized flow,
thus improving the performance of E-commerce, web, and social
applications. It is no great surprise, given the success of Amazon-monetizing
recommendations and the Netflix Prize, that any discussion of
personalization or data-theoretic prediction would involve a recommender.
What is surprising is how simple recommenders are to implement yet how
susceptible they are to the vagaries of sparse data and over-fitting.

Consider a non-algorithmic approach to eliciting recommendations: one of
the easiest ways to garner a recommendation is to look at the preferences of
someone we trust. We are implicitly comparing our preferences to theirs, and
the more similarities you share, the more likely you are to discover novel,
shared preferences. However, everyone is unique, and our preferences exist
across a variety of categories and domains. What if you could leverage the
preferences of a great number of people and not just those you trust? In the
aggregate, you would be able to see patterns, not just of people like you, but
also anti-recommendations - things to stay away from, cautioned by the
people not like you. You would, hopefully, also see subtle delineations across
the shared preference space of groups of people who share parts of your own
unique experience.

It is this basic premise that a group of techniques called collaborative
filteringÂ use to make recommendations. Simply stated, this premise can be
boiled down to the assumption that those who have similar past preferences
will share the same preferences in the future. This is from a human
perspective, of course, and a typical corollary to this assumption is from the
perspective of the things being preferred - sets of items that are preferred by
the same people will be more likely to be preferred together in the future-and
this is the basis for what is commonly described in literature as user-centric
collaborative filtering versus item-centric collaborative filtering.

Note

The term collaborative filtering was coined by David Goldberg
in a paper titled Using collaborative filtering to weave an
information tapestry, ACM, where he proposed a system called
Tapestry, which was designed at Xerox PARC in 1992, to
annotate documents as interesting or uninteresting and to give
document recommendations to people who are searching for
good reads.

Collaborative filtering algorithms search large groupings of preference
expressions to find similarities to some input preference or preferences. The
output from these algorithms is a ranked list of suggestions that is a subset of
all possible preferences, and hence, it's called filtering. The
collaborativeÂ comes from the use of many other people's preferences in
order to find suggestions for themselves. This can be seen either as a search
of the space of preferences (for brute-force techniques), a clustering problem
(grouping similarly preferred items), or even some other predictive model.
Many algorithmic attempts have been created in order to optimize or solve
this problem across sparse or large datasets, and we will discuss a few of
them in this chapter.

The goals of this chapter are as follows:

Understanding how to model preferences from a variety of sources
Learning how to compute similarities using distance metrics
Modeling recommendations using matrix factorization for star ratings

These two different models will be implemented in Python using readily
available datasets on the web. To demonstrate the techniques in this chapter,
we will use the oft-cited MovieLens database from the University of
Minnesota that contains star ratings of moviegoers for their preferred movies.

Note

Please note that this chapter is considered an advanced chapter
and will most likely require significantly more time to complete

than earlier chapters.

Modeling preference expressions

We have already pointed out that companies such as Amazon track purchases
and page views to make recommendations, Goodreads and Yelp use five-star
ratings and text reviews, and sites such as Reddit or Stack Overflow use
simple up/down voting. You can see that preference can be expressed in the
data in different ways, from Boolean flags, to voting, to ratings. However,
these preferences are expressed by attempting to find groups of similarities in
preference expressions in which you are leveraging the core assumption of
collaborative filtering.

More formally, we understand that two people, Bob and Alice, share a
preference for a specific item or widget. If Alice too has a preference for a
different item, say, a sprocket, then Bob has a better than random chance of
also sharing a preference for a sprocket. We believe that Bob and Alice's taste
similarities can be expressed in an aggregate via a large number of
preferences, and by leveraging the collaborative nature of groups, we can
filter the world of products.

How to do it...

We will model preference expressions over the next few recipes, including
the following:

Understanding the data
Ingesting the movie review data
Finding the highest rated movies
Improving the movie rating system

How it works...

A preference expression is an instance of a model of demonstrable relative
selection. That is to say, preference expressions are data points that are used

to show subjective ranking between a group of items for a person. Even more
formally, we should say that preference expressions are not simply relative,
but also temporal-for example, the statement of preference also has a fixed
time relativity as well as item relativity.

Note

Preference expression is an instance of a model of demonstrable
relative selection.

While it would be nice to think that we can subjectively and accurately
express our preferences in a global context (for example, rate a movie as
compared to all other movies), our tastes, in fact, change over time, and we
can really only consider how we rank items relative to each other. Models of
preference must take this into account and attempt to alleviate biases that are
caused by it. The most common types of preference expression models
simplify the problem of ranking by causing the expression to be numerically
fuzzy, for example:

Boolean expressions (yes or no)
Up and down voting (such as abstain, dislike)
Weighted signaling (the number of clicks or actions)
Broad ranked classification (stars, hated or loved)

The idea is to create a preference model for an individual user a numerical
model of the set of preference expressions for a particular individual. Models
build the individual preference expressions into a useful user-specific context
that can be computed against. Further reasoning can be performed on the
models in order to alleviate time-based biases or to perform ontological
reasoning or other categorizations.

As the relationships between entities get more complex, you can express their
relative preferences by assigning behavioral weights to each type of semantic
connection. However, choosing the weight is difficult and requires research
to decide relative weights, which is why fuzzy generalizations are preferred.
As an example, the following table shows you some well-known ranking
preference systems:

For the rest of this chapter, we will only consider a single, very common
preference expression: star ratings on a scale of 1 to 5.

Understanding the data

Understanding your data is critical to all data-related work. In this recipe, we
will acquire and take a first look at the data that we will be using to build our
recommendation engine.

Getting ready

To prepare for this recipe, and the rest of the chapter, download the
MovieLens data from the GroupLens website of the University of
Minnesota. You can find the data at http://grouplens.org/datasets/movielens/.

In this chapter, we will use the smaller MoveLens 100k dataset (4.7 MB in
size) in order to load the entire model into the memory with ease.

How to do it...

Perform the following steps to better understand the data that we will be
working with throughout this chapter:

1. Download the data from http://grouplens.org/datasets/movielens/. The
100K dataset is the one that you want (ml-100k.zip):

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/

2. Unzip the downloaded data into the directory of your choice.
3. The two files that we are mainly concerned with are u.data, which

contains the user movie ratings, and u.item, which contains movie
information and details. To get a sense of each file, use the head
command at the command prompt for Mac and Linux or the more
command for Windows:

head -n 5 u.item

Note

Note that if you are working on a computer running the Microsoft
Windows operating system and not using a virtual machine (not

recommended), you do not have access to the head command;
instead, use the following command: more u.item 2 n

4. The preceding command gives you the following output:

1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title- exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0
 exact?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|03|Four Rooms (1995)|01-Jan-1995||http://us.imdb.com/M/title- exact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0
 exact?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|1|0|0

The following command will produce the given output:

head -n 5 u.data

For Windows, you can use the following command:

more u.item 2 n196 242 3 881250949186 302 3 89171774222 377 1 878887116

How it works...

The two main files that we will be using are as follows:

u.data: This contains the user moving ratings
u.item: This contains the movie information and other details

Both are character-delimited files; u.data, which is the main file, is tab
delimited, and u.item is pipe delimited.

For u.data, the first column is the user ID, the second column is the movie
ID, the third is the star rating, and the last is the timestamp. The u.item file
contains much more information, including the ID, title, release date, and
even a URL to IMDb. Interestingly, this file also has a Boolean array
indicating the genre(s) of each movie, including (in order) action, adventure,
animation, children, comedy, crime, documentary, drama, fantasy, film-noir,
horror, musical, mystery, romance, sci-fi, thriller, war, and western.

There's more...

Free, web-scale datasets that are appropriate for building recommendation

engines are few and far between. As a result, the movie lens dataset is a very
popular choice for such a task, but there are others as well. The well-known
Netflix Prize dataset has been pulled down by Netflix. However, there is a
dump of all user-contributed content from the Stack Exchange network
(including Stack Overflow) available via the internet Archive
(https://archive.org/details/stackexchange). Additionally, there is a book-
crossing dataset that contains over a million ratings of about a quarter of aÂ
million different books (http://www2.informatik.uni-
freiburg.de/~cziegler/BX/).

https://archive.org/details/stackexchange
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Ingesting the movie review data

Recommendation engines require large amounts of training data in order to
do a good job which is why they're often relegated to big data projects.
However, to build a recommendation engine we must first get the required
data into memory and due to the size of the data must do so in a memory-safe
and efficient way. Luckily Python has all of the tools to get the job done and
this recipe shows you how.

Getting ready

You will need to have the appropriate movie lens dataset downloaded, as
specified in the preceding recipe. If you skipped the setup in Chapter 1,
Preparing Your Data Science Environment, you will need to go back and
ensure that you have NumPy correctly installed.

How to do it...

The following steps guide you through the creation of the functions that we
will need in order to load the datasets into the memory:

1. Open your favorite Python editor or IDE. There is a lot of code, so it
should be far simpler to enter it directly into a text file rather than a
Read-Eval-Print Loop (REPL).

2. We create a function to import the movie reviews:

In [1]: import csv
...: import datetime
In [2]: def load_reviews(path, **kwargs):
...: """
...: Loads MovieLens reviews
...: """
...: options = {
...: 'fieldnames': ('userid', 'movieid', 'rating', 'timestamp'),
...: 'delimiter': '\t',

...: }

...: options.update(kwargs)

...:

...: parse_date = lambda r,k: datetime.fromtimestamp(float(r[k]))

...: parse_int = lambda r,k: int(r[k])

...:

...: with open(path, 'rb') as reviews:

...: reader = csv.DictReader(reviews, **options)

...: for row in reader:

...: row['movieid'] = parse_int(row, 'movieid')

...: row['userid'] = parse_int(row, 'userid')

...: row['rating'] = parse_int(row, 'rating')

...: row['timestamp'] = parse_date(row, 'timestamp')

...: yield row

3. We create a helper function to help import the data:

In [3]: import os
...: def relative_path(path):
...: """
...: Returns a path relative from this code file
...: """
...: dirname = os.path.dirname(os.path.realpath('__file__'))
...: path = os.path.join(dirname, path)
...: return os.path.normpath(path)

4. We create another function to load the movie information:

In [4]: def load_movies(path, **kwargs):
...:
...: options = {
...: 'fieldnames': ('movieid', 'title', 'release', 'video', 'url'),
...: 'delimiter': '|',...: 'restkey': 'genre',
...: }
...: options.update(kwargs)
...:
...: parse_int = lambda r,k: int(r[k])
...: parse_date = lambda r,k: datetime.strptime(r[k], '%d-%b-%Y') if r[k] else None
...:
...: with open(path, 'rb') as movies:
...: reader = csv.DictReader(movies, **options)
...: for row in reader:
...: row['movieid'] = parse_int(row, 'movieid')
...: row['release'] = parse_date(row, 'release')
...: row['video'] = parse_date(row, 'video')
...: yield row

5. Finally, we start creating a MovieLens class that will be augmented in
later recipes:

In [5]: from collections import defaultdict
In [6]: class MovieLens(object):
...: """
...: Data structure to build our recommender model on.
...: """
...:
...: def __init__(self, udata, uitem):
...: """
...: Instantiate with a path to u.data and u.item
...: """
...: self.udata = udata
...: self.uitem = uitem
...: self.movies = {}
...: self.reviews = defaultdict(dict)
...: self.load_dataset()
...:
...: def load_dataset(self):
...: """
...: Loads the two datasets into memory, indexed on the ID.
...: """
...: for movie in load_movies(self.uitem):
...: self.movies[movie['movieid']] = movie
...:
...: for review in load_reviews(self.udata):...: self.reviews[review['userid']][review['movieid']] = review

6. Ensure that the functions have been imported into your REPL or the
Jupyter workspace, and type the following, making sure that the path to
the data files is appropriate for your system:

In [7]: data = relative_path('../data/ml-100k/u.data')
...: item = relative_path('../data/ml-100k/u.item')
...: model = MovieLens(data, item)

How it works...

The methodology that we use for the two data-loading functions
(load_reviews and load_movies) is simple, but it takes care of the details of
parsing the data from the disk. We created a function that takes a path to our
dataset and then any optional keywords. We know that we have specific ways
in which we need to interact with the csv module, so we create default

options, passing in the field names of the rows along with the delimiter,
which is \t. The options.update(kwargs) line means that we'll accept
whatever users pass to this function.

We then created internal parsing functions using a lambda function in Python.
These simple parsers take a row and a key as input and return the converted
input. This is an example of using lambda as internal, reusable code blocks
and is a common technique in Python. Finally, we open our file and create a
csv.DictReader function with our options. Iterating through the rows in the
reader, we parse the fields that we want to be int and datetime, respectively,
and then yield the row.

Note

Note that as we are unsure about the actual size of the input file,
we are doing this in a memory-safe manner using Python
generators. Using yield instead of return ensures that Python
creates a generator under the hood and does not load the entire
dataset into the memory.

We'll use each of these methodologies to load the datasets at various times
through our computation that uses this dataset. We'll need to know where
these files are at all times, which can be a pain, especially in larger code
bases; in the There's more... section, we'll discuss a Python pro-tip to
alleviate this concern.

Finally, we created a data structure, which is the MovieLens class, with which
we can hold our review's data. This structure takes the udata and uitem
paths, and then it loads the movies and reviews into two Python dictionaries
that are indexed by movieid and userid, respectively. To instantiate this
object, you will execute something like the following:

data = relative_path('../data/ml-100k/u.data')
item = relative_path('../data/ml-100k/u.item')
model = MovieLens(data, item)

Note that the preceding commands assume that you have your data in a folder
called data. We can now load the whole dataset into the memory, indexed on

the various IDs specified in the dataset.

Did you notice the use of the relative_path function? When dealing with
fixtures such as these to build models, the data is often included with the
code. When you specify a path in Python, such as data/ml-100k/u.data, it
looks it up relative to the current working directory where you ran the script.
To help ease this trouble, you can specify the paths that are relative to the
code itself:

import os def relative_path(path): """ Returns a path relative from this code file

Keep in mind that this holds the entire data structure in memory; in the case
of the 100k dataset, this will require 54.1 MB, which isn't too bad for modern
machines. However, we should also keep in mind that we'll generally build
recommenders using far more than just 100,000 reviews. This is why we
have configured the data structure the way we have very similar to a
database. To grow the system, you will replace the reviews and movies
properties with database access functions or properties, which will yield data
types expected by our methods.

Finding the highest-scoring movies

If you're looking for a good movie, you'll often want to see the most popular
or best-rated movies overall. Initially, we'll take a naÃ¯ve approach to
compute a movie's aggregate rating by averaging the user reviews for each
movie. This technique will also demonstrate how to access the data in our
MovieLens class.

Getting ready

These recipes are sequential in nature. Thus, you should have completed the
previous recipes in this chapter before starting with this one.

How to do it...

Follow these steps to output numeric scores for all movies in the dataset and
compute a top-10 list:

1. Augment the MovieLens class with a new method to get all reviews for a
particular movie:

In [8]: class MovieLens(object):
...:
...:
...: def reviews_for_movie(self, movieid):
...: """
...: Yields the reviews for a given movie
...: """
...: for review in self.reviews.values():
...: if movieid in review:
...: yield review[movieid]
...:

2. Then, add an additional method to compute the top 10 movies reviewed
by users:

In [9]: import heapq
...: from operator import itemgetter
...: class MovieLens(object):
...:
...: def average_reviews(self):
...: """
...: Averages the star rating for all movies. Yields a tuple of movieid,
...: the average rating, and the number of reviews.
...: """
...: for movieid in self.movies:
...: reviews = list(r['rating'] for r in self.reviews_for_movie(movieid))
...: average = sum(reviews) / float(len(reviews))
...: yield (movieid, average, len(reviews))
...:
...: def top_rated(self, n=10):
...: """
...: Yields the n top rated movies
...: """
...: return heapq.nlargest(n, self.bayesian_average(), key=itemgetter(1))
...:

Note

Note that the ... notation just below class
MovieLens(object): signifies that we will be appending the
average_reviews method to the existing MovieLens class.

3. Now, let's print the top-rated results:

In [10]: for mid, avg, num in model.top_rated(10):
...: title = model.movies[mid]['title']
...: print "[%0.3f average rating (%i reviews)] %s" % (avg, num,title)

4. Executing the preceding commands in your REPL should produce the
following output:

Out [10]: [5.000 average rating (1 reviews)] Entertaining Angels: The Dorothy Day Story (1996)
[5.000 average rating (3 reviews)] Prefontaine (1997)[5.000 average rating (3 reviews)] Star Kid (1997)

How it works...

The new reviews_for_movie() method that is added to the MovieLens class

iterates through our review dictionary values (which are indexed by the
userid parameter), checks whether the movieid value has been reviewed by
the user, and then presents that review dictionary. We will need such
functionality for the next method.

With the average_review() method, we have created another generator
function that goes through all of our movies and all of their reviews and
presents the movie ID, the average rating, and the number of reviews. The
top_rated function uses the heapq module to quickly sort the reviews based
on the average.

The heapq data structure, also known as the priority queue algorithm, is the
Python implementation of an abstract data structure with interesting and
useful properties. Heaps are binary trees that are built so that every parent
node has a value that is either less than or equal to any of its children nodes.
Thus, the smallest element is the root of the tree, which can be accessed in
constant time, which is a very desirable property. With heapq, Python
developers have an efficient means to insert new values in an ordered data
structure and also return sorted values.

There's more...

Here, we run into our first problem some of the top-rated movies only have
one review (and conversely, so do the worst-rated movies). How do you
compare Casablanca, which has a 4.457 average rating (243 reviews), with
Santa with Muscles, which has a 5.000 average rating (2 reviews)? We are
sure that those two reviewers really liked Santa with Muscles, but the high
rating for Casablanca is probably more meaningful because more people
liked it. Most recommenders with star ratings will simply output the average
rating along with the number of reviewers, allowing the user to determine
their quality; however, as data scientists, we can do better in the next recipe.

See also

The heapq documentation is available at
https://docs.python.org/2/library/heapq.html.

https://docs.python.org/2/library/heapq.html

Improving the movie-rating system

We don't want to build a recommendation engine with a system that
considers the likely straight-to-DVD Santa with Muscles as generally
superior to Casablanca. Thus, the naÃ¯ve scoring approach used previously
must be improved upon and is the focus of this recipe.

Getting ready

Make sure that you have completed the previous recipes in this chapter first.

How to do it...

The following steps implement and test a new movie-scoring algorithm:

1. Let's implement a new Bayesian movie-scoring algorithm, as shown in
the following function, adding it to the MovieLens class:

In [11]: def bayesian_average(self, c=59, m=3):
...: """
...: Reports the Bayesian average with parameters c and m.
...: """
...: for movieid in self.movies:
...: reviews = list(r['rating'] for r in self.reviews_for_movie(movieid))
...: average = ((c * m) + sum(reviews)) / float(c + len(reviews))
...: yield (movieid, average, len(reviews))

2. Next, we will replace the top_rated method in the MovieLens class with
the version in the following commands that uses the new
Bayesian_average method from the preceding step:

In [12]: def top_rated(self, n=10):
...: """
...: Yields the n top rated movies
...: """
...: return heapq.nlargest(n, self.bayesian_average(), key=itemgetter(1))

3. Printing our new top-10 list looks a bit more familiar to us and
Casablanca is now happily rated number 4:

[4.234 average rating (583 reviews)] Star Wars (1977)[4.224 average rating (298 reviews)] Schindler's List (1993)

How it works...

Taking the average of movie reviews, as shown in the previous recipe, simply
did not work because some movies did not have enough ratings to give a
meaningful comparison to movies with more ratings. What we'd really like is
to have every single movie critic rate every single movie. Given that this is
impossible, we could derive an estimate for how the movie would be rated if
an infinite number of people rated the movie; this is hard to infer from one
data point, so we should say that we would like to estimate the movie rating
if the same number of people gave it a rating on an average (for example,
filtering our results based on the number of reviews).

This estimate can be computed with a Bayesian average, implemented in the
bayesian_average() function, to infer these ratings based on the following
equation:

Here, m is our prior for the average of stars, and C is a confidence parameter
that is equivalent to the number of observations in our posterior.

Determining priors can be a complicated and magical art. Rather than taking
the complex path of fitting a Dirichlet distribution to our data, we can simply
choose an m prior of 3 with our five-star rating system, which means that our
prior assumes that star ratings tend to be reviewed around the median value.
In choosing C, you are expressing how many reviews are needed to get away
from the prior; we can compute this by looking at the average number of

reviews per movie:

print float(sum(num for mid, avg, num in model.average_reviews())) /
 len(model.movies)

This gives us an average number of 59.4, which we use as the default value in
our function definition.

There's more...

Play around with the C parameter. You should find that if you change the
parameter so that C = 50, the top-10 list subtly shifts; in this case, Schindler's
List and Star Wars are swapped in rankings, as are Raiders of the Lost Ark
and Rear Window - note that both the swapped movies have far more reviews
than the former, which means that the higher C parameter was balancing the
fewer ratings of the other movie.

See also

See how Yelp deals with this challenge at
http://venturebeat.com/2009/10/12/how-yelp-deals-with-everybody-
getting-four-stars-on-average/.

http://venturebeat.com/2009/10/12/how-yelp-deals-with-everybody-getting-four-stars-on-average/

Measuring the distance between users in the
preference space

The two most recognizable types of collaborative filtering systems are user-
based recommenders and item-based recommenders. If one were to imagine
that the preference space is an n-dimensional feature space where either users
or items are plotted, then we would say that similar users or items tend to
cluster near each other in this preference space; hence, an alternative name
for this type of collaborative filtering is nearest-neighbor recommenders.

A crucial step in this process is to come up with a similarity or distance
metric with which we can compare critics to each other or mutually preferred
items. This metric is then used to perform pairwise comparisons of a
particular user to all other users, or conversely, for an item to be compared to
all other items. Normalized comparisons are then used to determine
recommendations. Although the computational space can become
exceedingly large, distance metrics themselves are not difficult to compute,
and in this recipe, we will explore a few as well as implement our first
recommender system.

In this recipe, we will measure the distance between users; in the recipe after
this one, we will look at another similarity distance indicator.

Getting ready

We will continue to build on the MovieLens class from the Modeling
preference expressions section. If you have not had the opportunity to review
this section, please have the code for that class ready. Importantly, we will
want to access the data structures, MovieLens.movies and
MovieLens.reviews, which have been loaded from the CSV files on the disk.

How to do it...

The following sets of steps provide instructions on how to compute the
Euclidean distance between users:

1. Augment the MovieLens class with a new method,
shared_preferences, to pull out movies that have been rated by two
critics, A and B:

In [13]: class MovieLens(object):
...:
...: def shared_preferences(self, criticA, criticB):
...: """
...: Returns the intersection of ratings for two critics, A and B.
...: """
...: if criticA not in self.reviews:
...: raise KeyError("Couldn't find critic '%s' in data" % criticA)
...: if criticB not in self.reviews:
...: raise KeyError("Couldn't find critic '%s' in data" % criticB)
...:
...: moviesA = set(self.reviews[criticA].keys())
...: moviesB = set(self.reviews[criticB].keys())
...: shared = moviesA & moviesB # Intersection operator
...:
...: # Create a reviews dictionary to return
...: reviews = {}
...: for movieid in shared:
...: reviews[movieid] = (
...: self.reviews[criticA][movieid]['rating'],
...: self.reviews[criticB][movieid]['rating'],
...:)
...: return reviews
...:

2. Then, implement a function that computes the Euclidean distance
between two critics using their shared movie preferences as a vector for
the computation. This method will also be part of the MovieLens class:

In [14]: from math import sqrt
...:
...: def euclidean_distance(self, criticA, criticB, prefs='users'):
...: """
...: Reports the Euclidean distance of two critics, A and B by
...: performing a J-dimensional Euclidean calculation of each of their
...: preference vectors for the intersection of books the critics have
...: rated.
...: """

...:

...: # Get the intersection of the rated titles in the data.

...:

...: if prefs == 'users':

...: preferences = self.shared_preferences(criticA, criticB)

...: elif prefs == 'movies':

...: preferences = self.shared_critics(criticA, criticB)

...: else:

...: raise Exception("No preferences of type '%s'." % prefs)

...:

...: # If they have no rankings in common, return 0.

...: if len(preferences) == 0: return 0

...:

...: # Sum the squares of the differences

...: sum_of_squares = sum([pow(a-b, 2) for a, b in preferences.values()])

...:

...: # Return the inverse of the distance to give a higher score to

...: # folks who are more similar (e.g. less distance) add 1 to prevent

...: # division by zero errors and normalize ranks in [0, 1]

...: return 1 / (1 + sqrt(sum_of_squares))

3. With the preceding code implemented, test it in the REPL:

>>> data = relative_path('data/ml-100k/u.data')>>> item = relative_path('data/ml-100k/u.item')
>>> model = MovieLens(data, item)>>> print model.euclidean_distance(232, 532)

How it works...

The new shared_preferences() method of the MovieLens class determines
the shared preference space of two users. Critically, we can only compare
users (the criticA and criticB input parameters) based on the things that
they have both rated. This function uses Python sets to determine the list of
movies that both A and B reviewed (the intersection of the movies A has rated
and the movies B has rated). The function then iterates over this set, returning
a dictionary whose keys are the movie IDs and the values are a tuple of
ratings, for example, (ratingA, ratingB) for each movie that both users have
rated. We can now use this dataset to compute similarity scores, which is
done by the second function.

The euclidean_distance() function takes two critics as the input, A and B,
and computes the distance between users in preference space. Here, we have
chosen to implement the Euclidean distance metric (the two-dimensional

variation is well known to those who remember the Pythagorean theorem),
but we could have implemented other metrics as well. This function will
return a real number from 0 to 1, where 0 is less similar (farther apart) critics
and 1 is more similar (closer together) critics.

There's more...

The Manhattan distance is another very popular metric and a very simple one
to understand. It can simply sum the absolute values of the pairwise
differences between elements of each vector. Or, in code, it can be executed
in this manner:

manhattan = sum([abs(a-b) for a, b in preferences.values()])

This metric is also called the city-block distance because, conceptually, it is
as if you were counting the number of blocks north/south and east/west one
would have to walk between two points in the city. Before implementing it
for this recipe, you would also want to invert and normalize the value in some
fashion to return a value in the [0, 1] range.

See also

The distance overview from Wikipedia is available at
http://en.wikipedia.org/wiki/Distance.
The Taxicab geometry from Wikipedia is available at
http://en.wikipedia.org/wiki/Taxicab_geometry.

http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Taxicab_geometry

Computing the correlation between users

In the previous recipe, we used one out of many possible distance measures
to capture the distance between the movie reviews of users. This distance
between two specific users is not changed even if there are five or five
million other users.

In this recipe, we will compute the correlation between users in the
preference space. Like distance metrics, there are many correlation metrics.
The most popular of these are Pearson or Spearman correlations or cosine
distance. Unlike distance metrics, the correlation will change depending on
the number of users and movies.

Getting ready

We will be continuing the efforts of the previous recipes again, so make sure
you understand each one.

How to do it...

The following function implements the computation of the
pearson_correlation function for two critics, which are criticA and
criticB, and it is added to the MovieLens class:

In [15]: def pearson_correlation(self, criticA, criticB, prefs='users'):
...: """
...: Returns the Pearson Correlation of two critics, A and B by
...: performing the PPMC calculation on the scatter plot of (a, b)
...: ratings on the shared set of critiqued titles.
...: """
...:
...: # Get the set of mutually rated items
...: if prefs == 'users':
...: preferences = self.shared_preferences(criticA, criticB)
...: elif prefs == 'movies':
...: preferences = self.shared_critics(criticA, criticB)

...: else:

...: raise Exception("No preferences of type '%s'." % prefs)

...:

...: # Store the length to save traversals of the len computation.

...: # If they have no rankings in common, return 0.

...: length = len(preferences)

...: if length == 0: return 0

...:

...: # Loop through the preferences of each critic once and compute the

...: # various summations that are required for our final calculation.

...: sumA = sumB = sumSquareA = sumSquareB = sumProducts = 0

...: for a, b in preferences.values():

...: sumA += a

...: sumB += b

...: sumSquareA += pow(a, 2)

...: sumSquareB += pow(b, 2)

...: sumProducts += a*b

...:

...: # Calculate Pearson Score

...: numerator = (sumProducts*length) - (sumA*sumB)

...: denominator = sqrt(((sumSquareA*length) - pow(sumA, 2))

...: * ((sumSquareB*length) - pow(sumB, 2)))

...:

...: # Prevent division by zero.

...: if denominator == 0: return 0

...:

...: return abs(numerator / denominator)

...:

How it works...

The Pearson correlation computes the product moment, which is the mean of
the product of mean adjusted random variables and is defined as the
covariance of two variables (a and b, in our case) divided by the product of
the standard deviation of a and the standard deviation of b. As a formula, this
looks like the following:

For a finite sample, which is what we have, the detailed formula, which was
implemented in the preceding function, is as follows:

Another way to think about the Pearson correlation is as a measure of the
linear dependence between two variables. It returns a score of -1 to 1, where
negative scores closer to -1 indicate a stronger negative correlation, and
positive scores closer to 1 indicate a stronger, positive correlation. A score of
0 means that the two variables are not correlated.

In order for us to perform comparisons, we want to normalize our similarity
metrics in the space of [0, 1] so that 0 means less similar and 1 means more
similar, so we return the absolute value:

 >>> print model.pearson_correlation(232, 532)0.06025793538385047

There's more...

We have explored two distance metrics: the Euclidean distance and the
Pearson correlation. There are many more, including the Spearman
correlation, Tantimoto scores, Jaccard distance, Cosine similarity, and
Manhattan distance, to name a few. Choosing the right distance metric for the
dataset of your recommender along with the type of preference expression
used is crucial to ensuring success in this style of recommender. It's up to the
reader to explore this space further based on their interest and particular
dataset.

Finding the best critic for a user

Now that we have two different ways to compute a similarity distance
between users, we can determine the best critics for a particular user and see
how similar they are to an individual's preferences.

Getting ready

Make sure that you have completed the previous recipes before tackling this
one.

How to do it...

Implement a new method for the MovieLens class, similar_critics(),
which locates the best match for a user:

In [16]: import heapq
...:
...: def similar_critics(self, user, metric='euclidean', n=None):
...: """
...: Finds and ranks similar critics for the user according to the
...: specified distance metric. Returns the top n similar critics.
...: """
...:
...: # Metric jump table
...: metrics = {
...: 'euclidean': self.euclidean_distance,
...: 'pearson': self.pearson_correlation,
...: }
...:
...: distance = metrics.get(metric, None)
...:
...: # Handle problems that might occur
...: if user not in self.reviews:
...: raise KeyError("Unknown user, '%s'." % user)
...: if not distance or not callable(distance):
...: raise KeyError("Unknown or unprogrammed distance metric '%s'." % metric)
...:

...: # Compute user to critic similarities for all critics

...: critics = {}

...: for critic in self.reviews:

...: # Don't compare against yourself!

...: if critic == user:

...: continue

...:

...: critics[critic] = distance(user, critic)

...:

...: if n:

...: return heapq.nlargest(n, critics.items(), key=itemgetter(1))

...: return critics

How it works...

The similar_critics method, added to the MovieLens class, serves as the
heart of this recipe. It takes as parameters the targeted user and two optional
parameters: the metric to be used, which defaults to euclidean, and the
number of results to be returned, which defaults to None. As you can see, this
flexible method uses a jump table to determine what algorithm is to be used
(you can pass in euclidean or pearson to choose the distance metric). Every
other critic is compared to the current user (except a comparison of the user
against themselves). The results are then sorted using the flexible heapq
module and the top n results are returned.

To test out our implementation, print out the results of the run for both
similarity distances:

>>> for item in model.similar_critics(232, 'euclidean', n=10): print "%4i: %0.3f" % item
>>> for item in model.similar_critics(232, 'pearson', n=10): print "%4i: %0.3f" % item

These scores are clearly very different, and it appears that Pearson thinks that
there are many more similar users than the Euclidean distance metric. The
Euclidean distance metric tends to favor users who have rated fewer items
exactly the same. Pearson correlation favors more scores that fit well linearly,
and therefore, Pearson corrects grade inflation where two critics might rate
movies very similarly, but one user rates them consistently one star higher
than the other.

If you plot out how many shared rankings each critic has, you'll see that the

data is very sparse. Here is the preceding data with the number of rankings
appended:

Euclidean scores: 688: 1.000 (1 shared rankings) 914: 1.000 (2 shared rankings)

Therefore, it is not enough to find similar critics and use their ratings to
predict our users' scores; instead, we will have to aggregate the scores of all
of the critics, regardless of similarity, and predict ratings for the movies that
we haven't rated.

Predicting movie ratings for users

To predict how we might rate a particular movie, we can compute a weighted
average of critics who have also rated the same movies as the user. The
weight will be the similarity of the critic to the user if a critic has not rated a
movie, then their similarity will not contribute to the overall ranking of the
movie.

Getting ready

Ensure that you have completed the previous recipes in this large, cumulative
chapter.

How to do it...

The following steps walk you through the prediction of movie ratings for
users:

1. First, add the predict_ranking function to the MovieLens class in order
to predict the ranking that a user might give a particular movie with
similar critics:

In [17]: def predict_ranking(self, user, movie, metric='euclidean', critics=None):
...: """
...: Predicts the ranking a user might give a movie according to the
...: weighted average of the critics that are similar to the that user.
...: """
...:
...: critics = critics or self.similar_critics(user, metric=metric)
...: total = 0.0
...: simsum = 0.0
...:
...: for critic, similarity in critics.items():
...: if movie in self.reviews[critic]:
...: total += similarity * self.reviews[critic][movie]['rating']
...: simsum += similarity

...:

...: if simsum == 0.0: return 0.0

...: return total / simsum

2. Next, add the predict_all_rankings method to the MovieLens class:

In [18]: def predict_all_rankings(self, user, metric='euclidean', n=None):
...: """
...: Predicts all rankings for all movies, if n is specified returns
...: the top n movies and their predicted ranking.
...: """
...: critics = self.similar_critics(user, metric=metric)
...: movies = {
...: movie: self.predict_ranking(user, movie, metric, critics)
...: for movie in self.movies
...: }
...:
...: if n:
...: return heapq.nlargest(n, movies.items(), key=itemgetter(1))
...: return movies

How it works...

The predict_ranking method takes a user and a movie along with a string
specifying the distance metric and returns the predicted rating for that movie
for that particular user. A fourth argument, critics, is meant to be an
optimization for the predict_all_rankings method, which we'll discuss
shortly. The prediction gathers all critics who are similar to the user and
computes the weighted total rating of the critics, filtered by those who
actually did rate the movie in question. The weights are simply their
similarity to the user, computed by the distance metric. This total is then
normalized by the sum of the similarities to move the rating back into the
space of 1 to 5 stars:

>>> print model.predict_ranking(422, 50, 'euclidean') 4.35413151722

Here, we can see the predictions for Star Wars (ID 50 in our MovieLens
dataset) for the user 422. The Euclidean and Pearson computations are very
close to each other (which isn't necessarily to be expected), but the prediction
is also very close to the user's actual rating, which is 4.

The predict_all_rankings method computes the ranking predictions for all
movies for a particular user according to the passed-in metric. It optionally
takes a value, n, to return the top n best matches. This function optimizes the
similar critics' lookup by only executing it once and then passing those
discovered critics to the predict_ranking function in order to improve the
performance. However, this method must be run on every single movie in the
dataset:

>>> for mid, rating in model.predict_all_rankings(578, 'pearson', 10):

As you can see, we have now computed what our recommender thinks the
top movies forÂ this particular user are, along with what we think the user
will rate the movie! The top-10Â list of average movie ratings plays a huge
rule here and a potential improvement could be to use the Bayesian averaging
in addition to the similarity weighting, but that is left for the reader to
implement.

Collaboratively filtering item by item

So far, we have compared users to other users in order to make our
predictions. However, the similarity space can be partitioned in two ways.
User-centric collaborative filtering plots users in the preference space and
discovers how similar users are to each other. These similarities are then used
to predict rankings, aligning the user with similar critics. Item-centric
collaborative filtering does just the opposite; it plots the items together in the
preference space and makes recommendations according to how similar a
group of items are to another group.

Item-based collaborative filtering is a common optimization as the similarity
of items changes slowly. Once enough data has been gathered, reviewers
adding reviews does not necessarily change the fact that Toy Story is more
similar to Babe than The Terminator, and users who prefer Toy Story might
prefer the former to the latter. Therefore, you can simply compute item
similarities once in a single offline process and use that as a static mapping
for recommendations, updating the results on a semi-regular basis.

This recipe will walk you through item-by-item collaborative filtering.

Getting ready

This recipe requires the completion of the previous recipes in this chapter.

How to do it...

Construct the following function to perform item-by-item collaborative
filtering:

In [19]: def shared_critics(self, movieA, movieB):
...: """
...: Returns the intersection of critics for two items, A and B
...: """

...:

...: if movieA not in self.movies:

...: raise KeyError("Couldn't find movie '%s' in data" % movieA)

...: if movieB not in self.movies:

...: raise KeyError("Couldn't find movie '%s' in data" % movieB)

...:

...: criticsA = set(critic for critic in self.reviews if movieA in self.reviews[critic])

...: criticsB = set(critic for critic in self.reviews if movieB in self.reviews[critic])

...: shared = criticsA & criticsB # Intersection operator

...:

...: # Create the reviews dictionary to return

...: reviews = {}

...: for critic in shared:

...: reviews[critic] = (

...: self.reviews[critic][movieA]['rating'],

...: self.reviews[critic][movieB]['rating'],

...:)

...: return reviews
In [20]: def similar_items(self, movie, metric='euclidean', n=None):
...: # Metric jump table
...: metrics = {
...: 'euclidean': self.euclidean_distance,
...: 'pearson': self.pearson_correlation,
...: }
...:
...: distance = metrics.get(metric, None)
...:
...: # Handle problems that might occur
...: if movie not in self.reviews:
...: raise KeyError("Unknown movie, '%s'." % movie)
...: if not distance or not callable(distance):
...: raise KeyError("Unknown or unprogrammed distance metric '%s'." % metric)
...:
...: items = {}
...: for item in self.movies:
...: if item == movie:
...: continue
...:
...: items[item] = distance(item, movie, prefs='movies')
...:
...: if n:
...: return heapq.nlargest(n, items.items(), key=itemgetter(1))
...: return items
...:

How it works...

To perform item-by-item collaborative filtering, the same distance metrics
can be used, but they must be updated to use the preferences from
shared_critics rather than shared_preferences (for example, item
similarity versus user similarity). Update the functions to accept a prefs
parameter that determines which preferences are to be used, but I'll leave that
to the reader as it is only two lines of code (note that the answer is contained
in the sim.py source file in the directory that contains the code for Chapter 7,
Working with Social Graphs (Python)).

If you print out the list of similar items for a particular movie, you can see
some interesting results. For example, review the similarity results for The
Crying Game (1992), which has an ID of 631:

for movie, similarity in model.similar_items(631, 'pearson').items():

This crime thriller is not very similar to Toy Story, which is a children's
movie, but is more similar to Copycat, which is another crime thriller. Of
course, critics who have rated many movies skew the results, and more movie
reviews are needed before this normalizes into something more compelling.

It is presumed that the item similarity scores are run regularly, but they do not
need to be computed in real time. Given a set of computed item similarities,
computing recommendations are as follows:

In [21]: def predict_ranking(self, user, movie, metric='euclidean', critics=None):
...: """
...: Predicts the ranking a user might give a movie according to the
...: weighted average of the critics that are similar to the that user.
...: """
...:
...: critics = critics or self.similar_critics(user, metric=metric)
...: total = 0.0
...: simsum = 0.0
...:
...: for critic, similarity in critics.items():
...: if movie in self.reviews[critic]:
...: total += similarity * self.reviews[critic][movie]['rating']
...: simsum += similarity
...:
...: if simsum == 0.0: return 0.0
...: return total / simsum

This method simply uses the inverted item-to-item similarity scores rather
than the user-to-user similarity scores. Since similar items can be computed
offline, the lookup for movies via the self.similar_items method should be
a database lookup rather than a real-time computation:

>>> print model.predict_ranking(232, 52, 'pearson') 3.980443976

You can then compute a ranked list of all possible recommendations in a
similar way to the user-to-user recommendations.

Building a non-negative matrix
factorization model

A general improvement on the basic cross-wise nearest-neighbor similarity
scoring of collaborative filtering is a matrix factorization method, which is
also known as Singular Value Decomposition (SVD). Matrix factorization
methods attempt to explain the ratings through the discovery of latent
features that are not easily identifiable by analysts. For instance, this
technique can expose possible features such as the amount of action, family
friendliness, or fine-tuned genre discovery in our movies dataset.

What's especially interesting about these features is that they are continuous
and not discrete values and they can represent an individual's preference
along a continuum. In this sense, the model can explore shades of
characteristics, for example, perhaps a critic in the movie reviews dataset,
such as action flicks with a strong female lead that are set in European
countries. A James Bond movie might represent a shade of that type of movie
even though it only ticks the set in European countries and action genre
boxes. Depending on how similarly reviewers rate the movie, the strength of
the female counterpart to James Bond will determine how they might like the
movie.

Also, extremely helpfully, the matrix factorization model does well on sparse
data, that is data with few recommendation and movie pairs. Reviews data is
particularly sparse because not everyone has rated the same movies and there
is a massive set of available movies. SVD can also be performed in parallel,
making it a good choice for much larger datasets.

How to do it...

In the remaining recipes in this chapter, we will build a non-negative matrix
factorization model in order to improve our recommendation engine:

Loading the entire dataset into the memory
Dumping the SVD-based model to the disk
Training the SVD-based model
Testing the SVD-based model

How it works...

Matrix factorization, or SVD, works by finding two matrices such that when
you take their dot product (also known as the inner product or scalar
product), you will get a close approximation of the original matrix. We have
expressed our training matrix as a sparse N x M matrix of users to movies
where the values are the 5-star rating if it exists, otherwise the value is blank
or 0. By factoring the model with the values that we have and then taking the
dot product of the two matrices produced by the factorization, we hope to fill
in the blank spots in our original matrix with a prediction of how the user
would have rated the movie in that column.

The intuition is that there should be some latent features that determine how
users rate an item, and these latent features are expressed through the
semantics of their previous ratings. If we can discover the latent features, we
will be able to predict new ratings. Additionally, there should be fewer
features than there are users and movies (otherwise, each movie or user
would be a unique feature). This is why we compose our factored matrices by
some feature length before taking their dot product.

Mathematically, this task is expressed as follows. If we have a set of U users
and M movies, let R of size |U| x |M| be the matrix that contains the ratings of
users. Assuming that we have K latent features, find two matrices, P and Q,
where P is |U| x K and Q is |M| x K such that the dot product of P and Q
transpose approximates R. P, which therefore represent the strength of the
associations between users and features and Q represents the association of
movies with features:

There are a few ways to go about factorization, but the choice we made was

to perform gradient descent. Gradient descent initializes two random P and Q
matrices, computes their dot product, and then minimizes the error compared
to the original matrix by traveling down a slope of an error function (the
gradient). This way, the algorithm hopes to find a local minimum where the
error is within an acceptable threshold.

Our function computed the error as the squared difference between the
predicted value and the actual value:

To minimize the error, we modify the values pik and qkj by descending along
the gradient of the current error slope, differentiating our error equation with
respect to p yields:

We then differentiate our error equation with respect to the variable q yields
in the following equation:

We can then derive our learning rule, which updates the values in P and Q by
a constant learning rate, which is Î±. This learning rate, Î±, should not be too
large because it determines how big of a step we take toward the minimum,
and it is possible to step across to the other side of the error curve. It should
also not be too small; otherwise, it will take forever to converge:

We continue to update our P and Q matrices, minimizing the error until the
sum of the error squared is below some threshold, 0.001 in our code, or until
we have performed a maximum number of iterations.

Matrix factorization has become an important technique for recommended
systems, particularly those that leverage Likert-scale-like preference
expressions notably, star ratings. The Netflix Prize challenge has shown us
that matrix-factored approaches perform with a high degree of accuracy for
ratings prediction tasks. Additionally, matrix factorization is a compact,
memory-efficient representation of the parameter space for a model and can
be trained in parallel, can support multiple feature vectors, and can be
improved with confidence levels. Generally, they are used to solve cold-start
problems with sparse reviews and in an ensemble with more complex hybrid
recommended that also compute content-based recommenders.

See also

Wikipedia's overview of the dot product is available at
http://en.wikipedia.org/wiki/Dot_product.

http://en.wikipedia.org/wiki/Dot_product

Loading the entire dataset into the memory

The first step in building a nonnegative factorization model is to load the
entire dataset in the memory. For this task, we will be leveraging NumPy
highly.

Getting ready

In order to complete this recipe, you'll have to download the MovieLens
database from the University of Minnesota's GroupLens page at
http://grouplens.org/datasets/movielens/ and unzip it in a working directory
where your code will be. We will also use NumPy in this code significantly,
so please ensure that you have this numerical analysis package downloaded
and ready. Additionally, we will use the load_reviews function from the
previous recipes. If you have not had the opportunity to review the
appropriate section, please have the code for that function ready.

How to do it...

To build our matrix factorization model, we'll need to create a wrapper for
the predictor that loads the entire dataset into memory. We will perform the
following steps:

1. We create the following Recommender class as shown. Please note that
this class depends on the previously created and discussed
load_reviews function:

In [22]: import numpy as np
...: import csv
...:
...: class Recommender(object):
...:
...: def __init__(self, udata):
...: self.udata = udata
...: self.users = None

http://grouplens.org/datasets/movielens/

...: self.movies = None

...: self.reviews = None

...: self.load_dataset()

...:

...: def load_dataset(self):

...: """

...: Loads an index of users and movies as a heap and a reviews table

...: as a N x M array where N is the number of users and M is the number

...: of movies. Note that order matters so that we can look up values

...: outside of the matrix!

...: """

...: self.users = set([])

...: self.movies = set([])

...: for review in load_reviews(self.udata):

...: self.users.add(review['userid'])

...: self.movies.add(review['movieid'])

...:

...: self.users = sorted(self.users)

...: self.movies = sorted(self.movies)

...:

...: self.reviews = np.zeros(shape=(len(self.users), len(self.movies)))

...: for review in load_reviews(self.udata):

...: uid = self.users.index(review['userid'])

...: mid = self.movies.index(review['movieid'])

...: self.reviews[uid, mid] = review['rating']

2. With this defined, we can instantiate a model by typing the following
command:

data_path = '../data/ml-100k/u.data'model = Recommender(data_path)

How it works...

Let's go over this code line by line. The instantiation of our recommender
requires a path to the u.data file; creates holders for our list of users, movies,
and reviews; and then loads the dataset. We need to hold the entire dataset in
memory for reasons that we will see later.

The basic data structure to perform our matrix factorization on is an N x M
matrix where N is the number of users and M is the number of movies. To
create this, we will first load all the movies and users into an ordered list so
that we can look up the index of the user or movie by its ID. In the case of
MovieLens, all of the IDs are contiguous from 1; however, this might not

always be the case. It is good practice to have an index lookup table.
Otherwise, you will be unable to fetch recommendations from our
computation!

Once we have our index lookup lists, we create a NumPy array of all zeros in
the size of the length of our users' list by the length of our movies list. Keep
in mind that the rows are users and the columns are movies! We then go
through the ratings data a second time and then add the value of the rating at
the uid, mid index location of our matrix. Note that if a user hasn't rated a
movie, their rating is 0. This is important! Print the array out by entering
model.reviews, and you should see something like the following:

[[5. 3. 4. ..., 0. 0. 0.][4. 0. 0. ..., 0. 0. 0.][0. 0. 0. ..., 0. 0. 0.]
[0. 5. 0. ..., 0. 0. 0.]]

There's more...

Let's get a sense of how sparse or dense our dataset is by adding the
following two methods to the Recommender class:

In [23]: def sparsity(self):
...: """
...: Report the percent of elements that are zero in the array
...: """
...: return 1 - self.density()
...:
In [24]: def density(self):
...: """
...: Return the percent of elements that are nonzero in the array
...: """
...: nonzero = float(np.count_nonzero(self.reviews))
...: return nonzero / self.reviews.size

Adding these methods to our Recommender class will help us evaluate our
recommender, and it will also help us identify recommenders in the future.

Print out the results:

print "%0.3f%% sparse" % model.sparsity()print "%0.3f%% dense" % model.density()

You should see that the MovieLens 100k dataset is 0.937 percent sparse and

0.063 percent dense.

This is very important to keep note of along with the size of the reviews
dataset. Sparsity, which is common to most recommender systems, means
that we might be able to use sparse matrix algorithms and optimizations.
Additionally, as we begin to save models, this will help us identify the
models as we load them from serialized files on the disk.

Dumping the SVD-based model to the disk

Before we build our model, which will take a long time to train, we should
create a mechanism for us to load and dump our model to the disk. If we have
a way of saving the parameterization of the factored matrix, then we can
reuse our model without having to train it every time we want to use it this is
a very big deal since this model will take hours to train! Luckily, Python has
a built-in tool for serializing and deserializing Python objects - the pickle
module.

How to do it...

Update the Recommender class as follows:

In [26]: import pickle
...: class Recommender(object):
...: @classmethod
...: def load(klass, pickle_path):
...: """
...: Instantiates the class by deserializing the pickle.
...: Note that the object returned may not be an exact match
...: to the code in this class (if it was saved
...: before updates).
...: """
...: with open(pickle_path, 'rb') as pkl:
...: return pickle.load(pkl)
...:
...: def __init__(self, udata, description=None):
...: self.udata = udata
...: self.users = None
...: self.movies = None
...: self.reviews = None
...:
...: # Descriptive properties
...: self.build_start = None
...: self.build_finish = None
...: self.description = None
...:
...: # Model properties

...: self.model = None

...: self.features = 2

...: self.steps = 5000

...: self.alpha = 0.0002

...: self.beta = 0.02

...: self.load_dataset()

...:

...: def dump(self, pickle_path):

...: """

...: Dump the object into a serialized file using the pickle module.

...: This will allow us to quickly reload our model in the future.

...: """

...: with open(pickle_path, 'wb') as pkl:

...: pickle.dump(self, pkl)

How it works...

The @classmethod feature is a decorator in Python for declaring a class
method instead of an instance method. The first argument that is passed in is
the type instead of an instance (which we usually refer to as self). The load
class method takes a path to a file on the disk that contains a serialized
pickle object, which it then loads using the pickle module. Note that the
class that is returned might not be an exact match with the Recommender class
at the time you run the code this is because the pickle module saves the
class, including methods and properties, exactly as it was when you dumped
it.

Speaking of dumping, the dump method provides the opposite functionality,
allowing you to serialize the methods, properties, and data to disk in order to
be loaded again in the future. To help us identify the objects that we're
dumping and loading from disk, we've also added some descriptive properties
including a description, some build parameters, and some timestamps to our
__init__ function.

Training the SVD-based model

We're now ready to write our functions that factor our training dataset and
build our recommender model. You can see the required functions in this
recipe.

How to do it...

We construct the following functions to train our model. Note that these
functions are not part of the Recommender class:

In [27]: def initialize(R, K):
...: """
...: Returns initial matrices for an N X M matrix, R and K features.
...:
...: :param R: the matrix to be factorized
...: :param K: the number of latent features
...:
...: :returns: P, Q initial matrices of N x K and M x K sizes
...: """
...: N, M = R.shape
...: P = np.random.rand(N,K)
...: Q = np.random.rand(M,K)
...:
...: return P, Q

In [28]: def factor(R, P=None, Q=None, K=2, steps=5000, alpha=0.0002, beta=0.02):
...: """
...: Performs matrix factorization on R with given parameters.
...:
...: :param R: A matrix to be factorized, dimension N x M
...: :param P: an initial matrix of dimension N x K
...: :param Q: an initial matrix of dimension M x K
...: :param K: the number of latent features
...: :param steps: the maximum number of iterations to optimize in
...: :param alpha: the learning rate for gradient descent
...: :param beta: the regularization parameter
...:
...: :returns: final matrices P and Q
...: """

...:

...: if not P or not Q:

...: P, Q = initialize(R, K)

...: Q = Q.T

...:

...: rows, cols = R.shape

...: for step in xrange(steps):

...: for i in xrange(rows):

...: for j in xrange(cols):

...: if R[i,j] > 0:

...: eij = R[i,j] - np.dot(P[i,:], Q[:,j])

...: for k in xrange(K):

...: P[i,k] = P[i,k] + alpha * (2 * eij * Q[k,j] - beta * P[i,k])

...: Q[k,j] = Q[k,j] + alpha * (2 * eij * P[i,k] - beta * Q[k,j])

...:

...: e = 0

...: for i in xrange(rows):

...: for j in xrange(cols):

...: if R[i,j] > 0:

...: e = e + pow(R[i,j] - np.dot(P[i,:], Q[:,j]), 2)

...: for k in xrange(K):

...: e = e + (beta/2) * (pow(P[i,k], 2) + pow(Q[k,j], 2))

...: if e < 0.001:

...: break

...:

...: return P, Q.T

How it works...

We discussed the theory and the mathematics of what we are doing in the
previous recipe, Building a nonnegative matrix factorization model, so let's
talk about the code. The initialize function creates two matrices, P and Q,
which have a size related to the reviews matrix and the number of features,
namely N x K and M x K, where N is the number of users and M is the number of
movies. Their values are initialized to random numbers that are between 0.0
and 1.0. The factor function computes P and Q using gradient descent such
that the dot product of P and Q is within a mean squared error of less than
0.001 or 5000 steps that have gone by, whichever comes first. Especially note
that only values that are greater than 0 are computed. These are the values
that we're trying to predict; therefore, we do not want to attempt to match
them in our code (otherwise, the model will be trained on zero ratings)! This
is also the reason that you can't use NumPy's built-in Singular Value

Decomposition (SVD) function, which is np.linalg.svd or
np.linalg.solve.

There's more...

Let's use these factorization functions to build our model and to save the
model to disk once it has been built-this way, we can load the model at our
convenience using the dump and load methods in the class. Add the following
method to the Recommender class:

In [29]: def build(self, output=None, alternate=False):
...: """
...: Trains the model by employing matrix factorization on our training
...: data set, the sparse reviews matrix. The model is the dot product
...: of the P and Q decomposed matrices from the factorization.
...: """
...: options = {
...: 'K': self.features,
...: 'steps': self.steps,
...: 'alpha': self.alpha,
...: 'beta': self.beta,
...: }
...:
...: self.build_start = time.time()
...: nnmf = factor2 if alternate else factor
...: self.P, self.Q = nnmf(self.reviews, **options)
...: self.model = np.dot(self.P, self.Q.T)
...: self.build_finish = time.time()
...:
...: if output:
...: self.dump(output)

This helper function will allow us to quickly build our model. Note that we're
also saving P and Q - the parameters of our latent features. This isn't
necessary, as our predictive model is the dot product of the two factored
matrices. Deciding whether or not to save this information in your model is a
trade-off between retraining time (you can potentially start from the current P
and Q parameters although you must beware of the overfit) and disk space, as
pickle will be larger on the disk with these matrices saved. To build this
model and dump the data to the disk, run the following code:

model = Recommender(relative_path('../data/ml-100k/u.data'))model.build('reccod.pickle')

Warning! This will take a long time to build! On a 2013 MacBook Pro with a
2.8 GHz processor, this process took roughly 9 hours 15 minutes and
required 23.1 MB of memory; this is not insignificant for most of the Python
scripts that you might be used to writing! It is not a bad idea to continue
through the rest of the recipe before building your model. It is also probably
not a bad idea to test your code on a smaller test set of 100 records before
moving on to the entire process! Additionally, if you don't have the time to
train the model, you can find the pickle module of our model in the errata of
this book.

Testing the SVD-based model

This recipe brings this chapter on recommendation engines to a close. We
will now use our new non-negative matrix factorization based model and
take a look at some of the predicted reviews.

How to do it...

The final step in leveraging our model is to access the predicted reviews for a
movie basedÂ on our model:

In [30]: def predict_ranking(self, user, movie):
...: uidx = self.users.index(user)
...: midx = self.movies.index(movie)
...: if self.reviews[uidx, midx] > 0:
...: return None
...: return self.model[uidx, midx]

How it works...

Computing the ranking is relatively easy; we simply need to look up the
index of the user and the index of the movie and look up the predicted rating
in our model. This is why it is so essential to save an ordered list of the users
and movies in our pickle module; this way, if the data changes (we add users
or movies), but the change isn't reflected in our model, an exception is raised.
Because models are historical predictions and not sensitive to changes in
time, we need to ensure that we continually retrain our model with new data.
This method also returns None if we know the ranking of the user (for
example, it's not a prediction); we'll leverage this in the next step.

There's more...

To predict the highest-ranked movies, we can leverage the previous function
to order the highest predicted rankings for our user:

In [31]: import heapq
...: from operator import itemgetter
...:
...: def top_rated(self, user, n=12):
...: movies = [(mid, self.predict_ranking(user, mid)) for mid in self.movies]
...: return heapq.nlargest(n, movies, key=itemgetter(1))

We can now print out the top-predicted movies that have not been rated by
the user:

 >>> rec = Recommender.load('reccod.pickle')>>> for item in rec.top_rated(234):

It's then simply a matter of using the movie ID to look up the movie in our
movies database.

Chapter 9. Harvesting and Geolocating
Twitter Data (Python)
In this chapter, we will cover the following recipes:

Creating a Twitter application
Understanding the Twitter API v1.1
Determining your Twitter followers and friends
Pulling Twitter user profiles
Making requests without running afoul of Twitter's rate limits
Storing JSON data to the disk
Setting up MongoDB for storing Twitter data
Storing user profiles in MongoDB using PyMongo
Exploring the geographic information available in profiles
Plotting geospatial data in Python

Introduction

In this chapter, we are going to dive into the world of social media analysis
through the use of RESTful web service APIs. Twitter is a microblogging
social network whose stream is invaluable for data mining, particularly text
mining, and they have an excellent API that we will learn how to interact
with via Python. We will use the API to fetch Twitter social connections and
collect and store JSON data using both traditional file storage and the popular
NoSQL database, MongoDB. Our analysis will attempt to ascertain the
geographic location of connections and produce visualization from the data.

Throughout the chapter, you should begin to notice patterns about how APIs
are designed and their intended use. Interaction with APIs is an extremely
important data science topic, and having a solid understanding of them will
unlock a whole new world of data upon which you can perform a myriad of
analyses.

API stands for Application Programming Interface, and in traditional
computer science, it refers to methods that allow software applications to
interact with each other. These days, most references to APIs refer to a web
API the use of the internet to share data between your software application
and a web application (such as Twitter). Data acquisition and management is
an important part of the data science pipeline, and knowing how to use APIs
is essential for getting actionable datasets off the internet.

A special subset of APIs, called RESTful APIs, are actually the backbone of
most web applications, and they are everywhere. Although we can avoid
most of the technical jargon, we should point out that REST stands for
Representational State Transfer, which is a fancy way of saying that
documents or objects exist as representations, and modifications to their state
should be transferred via the API. RESTful APIs are a direct extension of the
Hypertext Transfer Protocol (HTTP) that the World Wide Web was built
upon, which is why they are so popular as web APIs. HTTP allows for clients
to connect to servers by making requests in the form of verbs: GET, POST,

DELETE, and PUT. Traditionally, the response is an HTML document.
Similarly, a RESTful API uses these verbs to make requests whose response
is a JSON document. The former is for human consumption (such as when
you visit a website such as http://www.google.com) and the latter is for
application consumption.

For this chapter, we will only use HTTP GET requests and the occasional POST
request. A GET request is just like it sounds; it asks the server to give you a
particular resource. A POST request, on the other hand, means that a client is
trying to provide data to the server (as in, submitting a form or uploading a
file). An API provider, such as Twitter, allows us to make HTTP GET requests
to a particular resource URL, which is often called an endpoint. For example,
the endpoint to GET all the most recent tweets for a particular user is
https://api.twitter.com/1.1/statuses/user_timeline.json. If we
make the correctly authenticated HTTP GET request to this endpoint, Twitter
will supply the data that composes the current user's timeline in the JSON
format.

http://www.google.com

Creating a Twitter application

Twitter is the ubiquitous microblogging social media platform with 253
million active members as of 2014. Fortunately for us, Twitter makes the
service's data more open and available to third parties than just about any
other social media site of similar size and standing in the tech community.
Additionally, Twitter offers a rich and user-friendly RESTful API that we
will make use of extensively. This recipe will show you how to create a new
Twitter application, which is a required step to access Twitter data
programmatically.

Getting ready

Make sure that you have a web browser installed, and open up a new browser
tab or window.

How to do it...

The following steps will walk you through the creation of a new Twitter
application:

Note

Note that Twitter does like to update its user interface (UI)
frequently and these steps, or the web-based forms, might change
accordingly

1. First, make sure that you have created a Twitter account. If you have not
created one, go to http://twitter.com and sign up. If you have an account,
simply log in to your Twitter account with your web browser.

http://twitter.com

2. Next, go to https://dev.twitter.com/apps and select the light blue button
labeled Create New App on the right-hand side of the screen:

3. Here, it will prompt you to enter your application details in three
mandatory fields and one optional one. Choose a name for your
application that is no more than 32 characters.

4. Next, supply a brief description of your application between 10 and 200
characters.

5. You must supply a website for your application, although it is not
applicable for our use case. Also, there is a specific format that is
required for the form to be submitted successfully. Enter
http://127.0.0.1.

6. Finally, you can ignore the Callback URL field, which is the last field on

https://dev.twitter.com/apps

the form.
7. Go ahead and take some time to read the Developer Rules of the

Road section, as this document details in plain and simple text what you
should and should not do using your application.

8. Click on Create your Twitter Application. After a few moments,
you should be on the main settings page of your new application with a
tabbed menu at the top of the screen. The current tab should be labeled
Details.

9. Click on the Keys and Access TokensÂ tab and you should see the
following screenshot:

10. Now, click on Create my access token in the Token actions gray box
at the bottom to authorize your application for your own account (you
might have to click the button more than once). The result should look
like the following screenshot:

11. Record the API key, API secret, Access token, and Access token
secret in a text file. These are important, but they must be protected
like you would protect your E-mail password or ATM pin. You can take
a screenshot to save the information, but it would be easier to copy and
paste these values into a text file for now.

Note

Now that you have MinGW and MSYS, there's no need to be
jealous of those with a Linux installation anymore, since they
implement in your system the most important parts of a Linux
development environment.

How it works...

You might be asking yourself why we needed to create an application if all
we want to do is pull some simple data from Twitter. Early versions (1.0 and
before) of the Twitter API allowed applications to make anonymous API
requests, retrieving data from Twitter without Twitter knowing who was
actually making the request. Since the deprecated Version 1.0 of the

company's API was retired on June 11, 2013, all API requests to Twitter
require authentication. This allows Twitter to keep track of who requests
what information and how much information was requested.

In general, there are several signs in the industry that the halcyon days of
social media data harvesting might be waning. Facebook's newest set of
APIs, specifically Version 2.0 of Facebook Login, has strongly locked down
what data can be obtained from the social graph. Furthermore, Twitter
acquired Gnip in April, 2014; Gnip is a reseller of Twitter data, and it allows
its customers to buy large portions of Twitter data. This move suggests that
Version 2.0 of the Twitter API might limit further access to Twitter verse.

See also

The following articles can be referred to:

The Obtaining access tokens article at
https://dev.twitter.com/docs/auth/obtaining-access-tokens
The Tokens from dev.twitter.com article at
https://dev.twitter.com/docs/auth/tokens-devtwittercom

https://dev.twitter.com/docs/auth/obtaining-access-tokens
https://dev.twitter.com/docs/auth/tokens-devtwittercom

Understanding the Twitter API v1.1

APIs are both a blessing and a curse. Application Programming Interfaces
make it much easier to gather data from services such as Twitter, Facebook,
or LinkedIn and define exactly what data the company wants, and does not
want, you to have. Unfortunately, companies set rate limits on accessing their
APIs in order to control the frequency (and therefore, the amount) of data that
can be harvested. They have also been known to radically alter their APIs
from one version to the next, thus resulting in a great deal of code rewrites
for all efforts dependent on the original API. Twitter's large API change from
Version 1.0 to Version 1.1 offers a cautionary tale.

Twitter offers three main APIs: the Search API, the REST API, and the
Streaming API. The search API gives us a programmatic method that makes
queries to Twitter in order to retrieve historical content, namely tweets. The
REST API offers access to Twitter's core features, including timelines, status
updates, and user information. Finally, the streaming API is the real-time API
designed for low latency access to Twitter's global stream of Tweet data.

With the streaming API, one must keep a persistent HTTP connection open to
Twitter. For our data mining and analysis purposes, this is overkill as we will
only be periodically requesting data from Twitter. Thus, we will be focusing
on the first two APIs and don't have to concern ourselves with the streaming
API.

Getting ready

Once you have created your application in the preceding recipe and copied
your keys, you are ready to proceed.

How to do it...

Perform the following steps in order to access the Twitter API

programmatically using Python:

1. First, install the twython library. Open a new Command Prompt and
type the following:

(sudo) pip install twython

The sudo command is needed if your current user account does not have
sufficient privileges.

2. Next, open a new Terminal and start the default Python REPL or
IPython. If you want to go the extra mile, you can also use IPython
Notebook.

3. Enter and execute the following Python code, filling in the needed
application keys:

In [1]: '''
 ...: Understanding the Twitter API v1.1
 ...: '''
 ...: from twython import Twython
In [2]: API_KEY = 'INSERT HERE'
 ...: API_SECRET = 'INSERT HERE'
 ...:
 ...: ACCESS_TOKEN = 'INSERT HERE'
 ...: ACCESS_TOKEN_SECRET = 'INSERT HERE'
In [3]: twitter = Twython(API_KEY, API_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET)

Note

Note that Twitter updates its developer interface frequently and
the API_KEY used to be called CONSUMER_KEY. Also, note that the
keys given in the code snippet need to be replaced with the values
collected during the previous recipe.

4. If you are using IPython, type the following at the REPL and then hit the
Tab key:

In [4]:twitter

This will bring up an impressive list of API calls that are now available to

you.

5. As a test, we can enter the following at the Python prompt:

In [4]: temp = twitter.get_user_timeline()

This command will fetch the last 20 status updates from your timeline as a
20-element list of Python dictionaries.

6. Furthermore, Twython gives us access to the response headers received
from Twitter:

In [5]: twitter.get_lastfunction_header('x-rate-limit-remaining')
 ...:

Out[5]: '899'

How it works...

With the preceding code, we are setting up our API keys and access tokens
that we pass in order to instantiate an instance of the Twython class. This new
object serves as our main interface to the Twitter API and defaults to using
OAuth v1 for authentication purposes. As this is a pretty common
requirement, we can wrap this functionality in its own function, as shown in
the following snippet. Before using the following function code, make sure
that you enter the needed application keys:

In [6]: def twitter_oauth_login():
 ...: API_KEY = 'INSERT HERE'
 ...: API_SECRET = 'INSERT HERE'
 ...: ACCESS_TOKEN = 'INSERT HERE'
 ...: ACCESS_TOKEN_SECRET = 'INSERT HERE'
 ...:
 ...: twitter = Twython(API_KEY, API_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET)
 ...: return(twitter)

 return(twitter)

Note

If you are checking your code into GitHub or another cloud-
based version control solution (such as Bitbucket), please check
whether that repository is public or private. All free repositories
on GitHub are public. If your repository is public, the world will
have access to your secret Twitter API keys. We strongly advise
that you only use private repositories for such matters and note
that bitbucket.org provides private repositories for free.

OAuth, which stands for the Open Authentication protocol, allows a user
to give permission to a third-party application to access an aspect of the user's
account (in this case, their Twitter account) without giving up the user's login
and password. Diving into the details of how OAuth works is outside the
scope of this recipe. However, it is important to discuss the two different
types of resource authentication for Twitter applications. The most common
authentication is the application-user authentication, which we will not use.
In this mode, your application makes a request on behalf of a user who has
granted the needed permissions to your application. For our project, we care
about the application-only authentication, where our application makes API

requests not for a user, but for itself. Note that some API calls do not support
application-only requests and that the rate limits for such requests are
typically different.

There's more...

The Twython library is not the only Python library available to simplify
access to Twitter's API. The following are three popular choices, including
the popular Python Twitter Tools, and you are free to explore or choose
whichever you see fit:

Python Twitter Tools (https://github.com/sixohsix/twitter): This is a
minimalist Python API for Twitter that includes a command-line tool in
order to get friends' tweets and send your own announcements.
Twython 3.1.2 (https://github.com/ryanmcgrath/twython): This is a pure
Python wrapper that supports both search and streaming APIs, which are
actively maintained. This is the library that we will be using.
python-twitter (https://github.com/bear/python-twitter): This is a pure
Python interface for the current v1.1 Twitter API.

Twitter maintains a list of alternatives across programming languages at
https://dev.twitter.com/docs/twitter-libraries. Please note that the code from
this chapter uses Twython exclusively, but it could be a useful exercise for
the reader to rewrite examples using the other Python libraries.

See also

You can also refer to:

The Twython documentation at http://twython.readthedocs.org/en/latest/
Detailed OAuth 1.0 Guide at http://hueniverse.com/oauth/guide/
The Twitter's OAuth implementation at
https://dev.twitter.com/docs/auth/oauth
Twitter's OAuth FAQ web page
https://dev.twitter.com/docs/auth/oauth/faq
The OAuth home page at http://oauth.net/

https://github.com/sixohsix/twitter
https://github.com/ryanmcgrath/twython
https://github.com/bear/python-twitter
https://dev.twitter.com/docs/twitter-libraries
http://twython.readthedocs.org/en/latest/
http://hueniverse.com/oauth/guide/
https://dev.twitter.com/docs/auth/oauth
https://dev.twitter.com/docs/auth/oauth/faq
http://oauth.net/

AdditionalTwitter libraries at https://dev.twitter.com/docs/twitter-
libraries

https://dev.twitter.com/docs/twitter-libraries

Determining your Twitter followers and
friends

In the Twitter social network, users are labeled either as followers or friends
relative to a particular user. Your friends are the people that you follow and
your followers are the people that follow you. In this recipe, we determine
who your friends are, who your followers are, and how much overlap there is
in each group.

Getting ready

For this recipe, we will be using the results of the previous two recipes and
the twitter_oauth_login() function. Also, we will be working in IPython
or the default Python REPL, if you prefer that instead. Feel free to use an
editor in order to start capturing and modifying the code as it grows in
complexity.

How to do it...

The following steps will allow you to determine all of your Twitter friends
and followers:

1. In IPython or your favorite REPL, enter the following:

In [8]: twitter = twitter_oauth_login()
 ...: friends_ids = twitter.get_friends_ids(count=5000)
 ...: friends_ids = friends_ids['ids']

In [9]: followers_ids = twitter.get_followers_ids(count=5000)
 ...: followers_ids = followers_ids['ids']

2. With all of your followers' and friends' Twitter IDs collected, let's see
how many you have:

In [10]: len(friends_ids), len(followers_ids)
 ...:
Out[10]: (22, 40)

3. We will use Python sets, which are based on the sets that you might
have encountered in math class, to examine some properties of our
friends and followers:

In [11]: friends_set = set(friends_ids)
 ...: followers_set = set(followers_ids)
 ...:
In [12]: print('Number of Twitter users who either are our friend or follow you (union):')
 ...: print(len(friends_set.union(followers_set)))
 ...:
Number of Twitter users who either are our friend or follow you (union):
56
In [13]: len(friends_set | followers_set)
 ...: len(set(friends_ids+followers_ids))
 ...:
Out[13]: 56

In [14]: print('Number of Twitter users who follow you and are your friend (intersection):')
 ...: print(len(friends_set & followers_set))
 ...:
Number of Twitter users who follow you and are your friend (intersection):
6

In [15]: print("Number of Twitter users you follow that don't follow you (set difference):")
 ...: print(len(friends_set - followers_set))
 ...:

In [16]: Number of Twitter users you follow that don't follow you (set difference):
16
print("Number of Twitter users who follow you that you don't follow (set difference):")
 ...: print(len(followers_set - friends_set))
 ...:
Number of Twitter users who follow you that you don't follow (set difference):
34

The preceding snippet should result in the following output:

Note

The numbers shown in the preceding screenshot will most likely
be different based on the number of friends and followers you
have.

How it works...

This recipe demonstrates just how useful the twython package is and how
easy it makes certain tasks. After we logged in using the
twitter_oauth_login function, we make two basic calls using the twitter
object, one to get friends' IDs and one to get followers' IDs. Note that we set
the count parameter to 5000, which is the maximum value allowed by the
Twitter API. The twitter object returned a dictionary from which we
extracted the actual IDs.

One of the nice things about the Twython interface is how closely it mirrors
the Twitter API. If you ever have a question about a particular function, just
check the Twitter documents.

Once we have collected our list of friends' and followers' IDs, we turn to the
Python set type for some quick navel gazing. The Python set type, which has
been built into Python since Version 2.4, is an unordered collection of unique
objects. The key word for us is the word unique. If we create a set from a list
with duplicates, we will get a set with only unique elements; set([1, 2, 2,
3, 3, 3]) will return {1, 2, 3}.

We unite the set of friends' IDs with the followers' IDs to determine the total
set of unique IDs of Twitter users that either follow or are followed by us. In

the preceding code, we use the union method of the set type, but there are
several other ways in which we could have done this:

(friends_set | followers_set)
(set(friends_ids + followers_ids))

There's more...

While Twython's beautiful abstraction hides some of the complexity of using
the API, this simplicity or magic can be problematic if we don't have an
understanding of what is actually happening behind the scenes. When we call
the twitter.get_friends_ids(count=5000) method, we are sending an
HTTP GET request to a particular URL. In the case of
twitter.get_friends_ids(), the URL is
https://api.twitter.com/1.1/friends/ids.json.

The count=5000 input parameter to the function call shows up as field-value
pairs in the URL and as such, the URL becomes
https://api.twitter.com/1.1/friends/ids.json?count=5000.

Now, the actual API endpoint requires some default parameter values that
Twython fills in for us, as shown in the following URL for clarity:

https://api.twitter.com/1.1/friends/ids.json?cursor=-
 1&screen_name=sayhitosean&count=5000

The Twitter v1.1 API requires all requests to be authenticated using OAuth.
The required information is actually embedded in the header of the GET
request, and the process of constructing the appropriate header is extensive
(for more information, go to https://dev.twitter.com/docs/auth/authorizing-
request). Thus, Twython not only forms the proper URL for making the
request, but also handles the relatively painful Open Authorization so that we
don't have to. If you are interested, you can go down a level lower and
construct your own GET requests using the excellent request library or an
alternative of your choosing. We leave this for the reader to explore.

Note

https://dev.twitter.com/docs/auth/authorizing-request

Note that different Twitter API endpoints have different rate
limits. In the case of GET friends/IDs, we are only allowed 15
calls over a 15 minute period for Version 1.1 of the API as of
May 2014. Other endpoints are less stingy with their data.

See also

You can also refer to the following:

The GET friends/ids article at
https://dev.twitter.com/docs/api/1.1/get/friends/ids
The GET followers/ids article at
https://dev.twitter.com/docs/api/1.1/get/followers/ids
The Requests: HTTP for Humans article at http://docs.python-
requests.org/en/latest/

https://dev.twitter.com/docs/api/1.1/get/friends/ids
https://dev.twitter.com/docs/api/1.1/get/followers/ids
http://docs.python-requests.org/en/latest/

Pulling Twitter user profiles

For this recipe, we are going to use the Twitter API to pull JSON data about
Twitter users. Each Twitter user, identified by either a screen name (such as
SayHiToSean) or a unique integer, has a profile containing a rich set of
information about someone.

Getting ready

You will need the list of followers' and friends' IDs from the previous recipe,
Determining your Twitter followers and friends.

How to do it...

The following steps guide you through retrieving a set of Twitter users'
profiles:

1. First, we create a function that will manage pulling Twitter profiles:

In [18]: def pull_users_profiles(ids):
 ...: users = []
 ...: for i in range(0, len(ids), 100):
 ...: batch = ids[i:i + 100]
 ...: users += twitter.lookup_user(user_id=batch)
 ...: print(twitter.get_lastfunction_header('x-rate-limit-remaining'))
 ...: return (users)

2. We put this function to use, pulling profiles of both friends and
followers:

In [19]: friends_profiles = pull_users_profiles(friends_ids)
 ...: followers_profiles = pull_users_profiles(followers_ids)
899
898

3. To check whether everything works, we use a list comprehension to

extract all of the friends' screen names from the profiles:

In [20]: friends_screen_names = [p['screen_name'] for p in friends_profiles]

4. Using the following command, you should be greeted by a list of your
friends' screen names:

In [21]: friends_screen_names
 ...:
Out[21]:
['nammamechanik',
'Ruchir78',

'nspothnis',

'jdelaney666',

'zakaas4u',

'arunkumar_n_t']

How it works...

The first step in this recipe was the creation of a function that manages the
twitter.lookup_user method call. The Twitter users/lookup endpoint
accepts 100 user IDs at a time. Thus, we need to loop over our list of friends'
or followers' IDs and batch them into groups of 100 for the requests. Twitter
returns a JSON object that Twython converts into a list of Python
dictionaries, ready for use.

There is an alternative way of retrieving profiles. Instead of pulling friends'
and followers' IDs and then using those to request user profiles, we could
have queried the friends/list endpoint with simply the current user's screen
name (in this case, mine, which is @SayHiToSean) or user ID. Twitter would
then return up to 200 user profiles per request. If you work out the API limits,
either path works out to the same number of user profiles pulled in the 15
minute default time window that Twitter uses for rate-limiting purposes.

There's more...

The pull_users_profiles function that we created has an extra feature in
the last line of the loop:

print(twitter.get_lastfunction_header('x-rate-limit-remaining'))

We retrieve the header of the response from the last API call and check the x-
rate-limit-remaining value. This value tells us exactly how many API
calls we have left in a given 15 minute window. Although we print this value
out with each loop, we do absolutely nothing to prevent us from slamming up
against Twitter's rate limit, which varies by the endpoint.

Furthermore, the list comprehension that we used in step 3 can fail if, for
some reason, one of the Twitter user profiles that were received did not have
a screen_name key. Thus, it would be better to add a condition to the
comprehension:

In [22]: friends_screen_names = [p['screen_name'] for p in friends_profiles if 'screen_name' in p]

Or, as an alternative and potentially a more Pythonic way, we could use the
GET method of the dictionary:

In [23]: friends_screen_names = [p.get('screen_name',{}) for p in friends_profiles]

In this case, profiles that do not have a screen_name key are not skipped, but
are replaced with None, instead.

See also

You can also refer to the following:

The description of the Twitter user profile JSON at
https://dev.twitter.com/docs/platform-objects/users
The GET users/lookup documentation at
https://dev.twitter.com/docs/api/1.1/get/users/lookup
The GET friends/list documentation at
https://dev.twitter.com/docs/api/1.1/get/friends/list

https://dev.twitter.com/docs/platform-objects/users
https://dev.twitter.com/docs/api/1.1/get/users/lookup
https://dev.twitter.com/docs/api/1.1/get/friends/list

Making requests without running afoul of
Twitter's rate limits

For this recipe, we are going to modify the function created in the previous
recipe, Pulling Twitter user profiles, in order to avoid hitting the dreaded
Twitter API rate limits.

Getting ready

You will again need the list of followers' and friends' IDs from the previous
recipe, Pulling Twitter user profiles, as well as the authenticated Twython
object.

How to do it...

The following function demonstrates how you can retrieve a set of Twitter
users' profiles in a rate-limit-aware fashion:

In [25]: import time
 ...: import math

In [26]: rate_limit_window = 15 * 60 #900 seconds

In [27]: def pull_users_profiles_limit_aware(ids):
 ...: users = []
 ...: start_time = time.time()
 ...: # Must look up users in
 ...: for i in range(0, len(ids), 10):
 ...: batch = ids[i:i + 10]
 ...: users += twitter.lookup_user(user_id=batch)
 ...: calls_left = float(twitter.get_lastfunction_header('x-rate-limit-remaining'))
 ...: time_remaining_in_window = rate_limit_window - (time.time()-start_time)
 ...: sleep_duration = math.ceil(time_remaining_in_window/calls_left)
 ...: print('Sleeping for: ' + str(sleep_duration) + ' seconds; ' + str(calls_left) + ' API calls remaining')
 ...: time.sleep(sleep_duration)
 ...: return (users)

How it works...

This function is a modified version of the previous recipe's function that pulls
users' profiles so that we do not run afoul of Twitter's ubiquitous rate limit.
We insert a dynamic pause into each iteration of the loop with the length
determined by the number of API calls remaining in the time window. Before
the loop starts, we capture the current system time in the start_time
variable. After each API call made by the twitter object, we grab the header
of the response and check the number of API calls remaining in the 15-
minute time window. We compute the time that has elapsed since
start_time and subtract this from 900 seconds, yielding the time left in the
15-minute window. Finally, we compute the number of seconds needed per
remaining API calls and sleep for the required period. We use the math.ceil
function to round up and make sure that we always give just a little bit of
extra time so as to not hit the rate limit.

You might ask why one would care about hitting the Twitter API rate limit.
Why not just keep hitting the API even after the limit has been reached? The
simple answer is that Twitter can and will block applications that abuse the
prescribed rate limits too often. Thus, it is in your best interest to play by the
rules. Furthermore, you can't pull any additional information if you try once
the rate limit has been exceeded, so why bother?

Storing JSON data to disk

Calls to the API can be expensive in terms of bandwidth and the rate limits
that service providers place on their API. While Twitter is quite generous
about these limits, other services are not. Regardless, it is good practice to
save the retrieved JSON structures to disk for later use.

Getting ready

For this recipe, you will need previously retrieved data, preferably from the
previous recipes.

How to do it...

The following steps walk us through saving the JSON data to disk and then
loading it back into the Python interpreter's memory:

1. First, we must import the json package and create two helper functions:

In [31]: import json
 ...: def save_json(filename, data):
 ...: with open(filename, 'wb') as outfile:
 ...: json.dump(data, outfile)

In [32]: def load_json(filename):
 ...: with open(filename) as infile:
 ...: data = json.load(infile)
 ...: return data

2. At the Python prompt, let's test our functions by saving our friends'
JSON-based Twitter profiles to disk:

In [33]: fname = 'test_friends_profiles.json'
 ...: save_json(fname, friends_profiles)

3. Check to make sure that the file was created. If you are using IPython,

simply type ls or open up a Terminal shell, change to the current
directory, and type ls. You should see test_friends_profiles.json in
the current directory.

4. Now, let's load the file back into our Python workspace:

In [34]: test_reload = load_json(fname)
 ...: print(test_reload[0])

How it works...

The json library, which is part of the Python standard library, provides a
simple but effective JSON encoder and decoder. When writing a file via the
save_json function, we use the json.dump method to serialize the data object
(in this case, a Python dictionary) as a JSON-formatted stream with a default
UTF-8 encoding and send it to the outfile. Conversely, the load_json
function uses json.load, which deserializes the infile to a Python object.

Setting up MongoDB for storing Twitter
data

The default response format for the REST API is JSON, and thus, it is easiest
to store this data as JSON in order to avoid extra data wrangling. While there
are a number of different databases and data stores that can handle JSON
data, we want to choose one that is relatively easy to set up, handles JSON
data natively, is free to use, and is relatively popular. Thus, we will go with
MongoDB.

Getting ready

For this recipe, you will need to download MongoDB on your local machine,
so make sure that you have a broadband connection to the internet.

How to do it...

The following steps will walk you through setting up MongoDB and using it
through the command shell:

1. The first step for this stage is to install MongoDB. The easiest way to do
this is to download the latest binary distribution (currently, 3.4) from the
http://www.mongodb.org/downloads. 64-bit binary distributions that is
available for Windows, Linux, macOS X, and Solaris.

2. Once downloaded, follow the pertinent installation guide at
http://docs.mongodb.org/manual/installation/.

3. Next, we need to start MongoDB by typing in mongod at the Command
Prompt.

4. With the DB running, we need to connect to it via the included mongo
shell. For this, open another terminal window or command line and type
the following:

mongo

http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/installation/

5. This command assumes that MongoDB is running on port 27017 and at
localhost. If this is not the case, start the mongo shell as shown, with the
correct address of host and port number specified:

mongo address_of_host:port_number

6. Now that we are running the mongo shell, we can get to work. Let's
create a database named test, so type in the following:

use test

7. Once the test database has been created, we need to create the tweets
collection that will actually store all of the tweets that we are going to
harvest. For this, use the following:

db.createCollection('user_profiles')

8. We want to check whether the collection was created, so we must first
switch to the current database by using the following command:

use test

9. Ask the mongo shell to show all collections in this database, and you will
receive a simple list of collections in the local database:

show collections

How it works...

In this straightforward recipe, we have laid the foundations for how to use the
popular MongoDB. We have installed and run MongoDB and have connected
to it using the mongo shell. Furthermore, we have named a new database,
which is test , and created a document collection called user_profiles.
Collections in MongoDB are groupings of MongoDB documents that are
somewhat similar to a table in a relational database, such as Postgres. These
documents are usually similar in structure and purpose, but unlike relational
databases, do not have to be completely uniform and can evolve easily over
time. For our purposes, the group of Twitter users' profiles make a great
collection.

Personally, we don't like to run the mongod process either in the background
or upon login, so we start MongoDB from the command line. This way, when
we're not using MongoDB, it is not running in the background, consuming
CPU cycles or draining the battery.

There's more...

MongoDB is not the only NOSQL document store that is well suited for
JSON data and many alternatives exist, including CouchDB
(http://couchdb.apache.org/). Most key/value stores such as Amazon's
Dynamo or Riak from Basho are great for storing JSON data with relatively
minimal setup and configuration as well. With Amazon's Dynamo, you also
get the added benefit of it being a fully cloud-based, pay-as-you-go solution
that can scale almost infinitely. Finally, some relational databases, including
Postgres, natively support a JSON datatype and perform error checking on
the data in order to make sure that the stored data is valid JSON. However,
the setup and configuration of Postgres tends to be a bit more challenging
than MongoDB.

An additional advantage with MongoDB, although not an exclusive
advantage, is that free, hosted platform-as-a-service options exist. In other
words, you can provision a completely configured MongoDB database
running in the cloud without doing anything more than walking through a
fairly straightforward, web-based interface to log in and create your database.
The best part is that both MongoLab and MongoHQ offer a free service tier,
which means that you set up and use your own MongoDB database in the
cloud without paying any money!

Note

Since this section was written, the authors have had the
opportunity to test and use RethinkDB (http://rethinkdb.com/),
which is a relatively new open-sourced distributed database that
easily handles JSON datatypes yet offers joins across tables of
documents much like a relational database. If we were to rewrite
this chapter, we would do so using RethinkDB.

http://couchdb.apache.org/

See also

You can also refer to the following:

The MongoDB v2.4 Manual at http://docs.mongodb.org/v2.4/
The Getting Started with MongoDB guide at
http://docs.mongodb.org/manual/tutorial/getting-started/
CRUD in MongoDB at http://docs.mongodb.org/manual/crud/
The CouchDB home page at http://couchdb.apache.org/
The MongoLab home page https://mongolab.com/welcome/
The MongoHQ home page at http://www.mongohq.com/ï»¿

http://docs.mongodb.org/v2.4/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/manual/crud/
http://couchdb.apache.org/
https://mongolab.com/welcome/
http://www.mongohq.com/
http://www.mongohq.com/

Storing user profiles in MongoDB using
PyMongo

With user profile data retrieved and MongoDB installed and ready for action,
we need to store the user profile JSON into the appropriate collection, and we
want to do so from within our Python scripts and not using the mongo shell.
For this, we are going to use PyMongo, which is the recommended way to
work with MongoDB from Python, as per the MongoDB people themselves.
As of January 2014, PyMongo was sitting at Version 2.6.3
(http://api.mongodb.org/python/current/).

Getting ready

You must already have MongoDB installed and have some sample user
profile data to be ready pulled for this recipe.

How to do it...

The following steps will guide you through saving Python dictionaries as
JSON documents within MongoDB:

1. To get started, we must install PyMongo on our systems. On a
Command-line Prompt, type the following:

pip install pymongo

2. Depending on your current user privileges, you might have to use sudo
with these commands:

sudo pip install pymongo

3. If the preceding installations do not work and report errors, please see
the more detailed instructions online at

http://api.mongodb.org/python/current/

http://api.mongodb.org/python/current/installation.html, as there are
some potential C dependencies that might have to be compiled
separately, depending on your system.

4. With PyMongo installed, drop in to a Python, IPython, or IPython
Notebook session and enter the following:

In [36]: import pymongo

In [37]: host_string = "mongodb://localhost"
 ...: port = 27017
 ...: mongo_client = pymongo.MongoClient(host_string, port)

In [38]: mongo_db = mongo_client['test']

In [39]: user_profiles_collection = mongo_db['user_profiles']

In [40]: user_profiles_collection.insert(friends_profiles)
 ...: user_profiles_collection.insert(followers_profiles)

How it works...

After we installed pymongo, there weren't many steps required to get us
connected to and then storing JSON, in our local MongoDB database.

We first created a MongoClient that is connected to the mongod specified in
the host string and port. We then use dictionary-style access to access the
needed mongo_db database (in this case, test) and the particular collection (in
this case, user_profiles). We call the insert method of the collection and
pass it the JSON data to save. For this effort, we receive either one ObjectID
or a list of ObjectIDs for the newly stored objects.

There are a number of things to be noted here. We choose to use the
dictionary-style access (mongo_client['test']) just in case the database
name contains characters such as - that would prevent the attribute style
access to the database (client.test). Also, please note that MongoDB does
nothing until a document is actually stored in the collection.

Alternatively, we can wrap the preceding commands in a function for easier
reuse later. In the following command, save_json_data_to_mongo takes
either a single JSON document or an iterable list of JSON documents and the

http://api.mongodb.org/python/current/installation.html,

specifications required in order to access the particular database and
collection in MongoDB. The host_string parameter defaults to localhost
and the port defaults to 27017:

In [41]: def save_json_data_to_mongo(data, mongo_db,
 ...: mongo_db_collection,
 ...: host_string = "localhost",
 ...: port = 27017):
 ...: mongo_client = pymongo.MongoClient(host_string, port)
 ...: mongo_db = mongo_client[mongo_db]
 ...: collection = mongo_db[mongo_db_collection]
 ...: inserted_object_ids = collection.insert(data)
 ...: return(inserted_object_ids)

We can improve this function by performing a check to see whether the
number of JSON documents matches the number of ObjectIDs returned, but
we will leave this exercise to the reader.

Exploring the geographic information
available in profiles

The Twitter users' profiles contain two different, potential sources of
geographic information: the profile itself and the most recently tweeted status
update. We will utilize both options in this recipe with an eye towards
usability in constructing a geographic visualization of our friends.

Getting ready

You will need the harvested friends' and/or followers' profiles from Twitter,
as directed in the previous recipes.

How to do it...

Perform the following steps to extract the geographic data that we need to
visualize the approximate locations of our connections:

1. We start this exercise in IPython or your favorite Python REPL. Load
your friends' profiles from the file:

In[1]: fname = 'test_friends_profiles.json'
In[2]: load_json(fname)

2. Next, we build lists from all of the values of the geo_enabled field in
the user profiles' data structures for our friends. Then, we use the count
method to find the number of user profiles that have the geo_enabled
flag set to true:

In[3]: geo_enabled = [p['geo_enabled'] for p in friends_profiles]
In[4]: geo_enabled.count(1)
Out[4]: 127

3. We repeat a very similar process to the one used in the second step to

count how many friends' user profiles have a blank location field:

In[5]: location = [p['location'] for p in friends_profiles]
In [6]: location.count('')
Out[6]: 79

4. To get a quick ID of the data contained in the location field of user
profiles, we print out a unique list and note the messiness of the data. It
would appear that location is a free text field, which is very
disappointing:

In[7]: print(set(location))

Out[7]:
...
u'Washington D.C.',
u'Washington DC',
u'iPhone: 50.122643,8.670158',
u'london',
u'new world of work',
u'san francisco',
u'seattle, wa',
u'usually in Connecticut',
u'washington, dc',
...

5. Now, we turn our attention to the time_zone field:

In[8]: time_zone = [p['time_zone'] for p in friends_profiles]
In[9]: time_zone.count(None)
Out[9]: 62
In[10]: print(set(time_zone))
Out[10]: {None, u'Alaska', u'Amsterdam', u'Arizona', u'Atlantic Time (Canada)', u'Berlin',
...

6. Finally, as each user profile contains that user's most recent status
update (or tweet), we want to check how many of these tweets were geo-
tagged by the user. Note the logical and conditional portion of the list
comprehension. We only want p['status']['geo'] if these keys are
present in the data structure:

In[11]: status_geo = [p['status']['geo'] for p in friends_profiles if ('status' in p and p['status']['geo'] is
In [12]: if status_geo: print status_geo[0]
Out[12]: {u'coordinates': [38.91431189, -77.0211878], u'type': u'Point'}

In[13]: len(status_geo)
Out[13]: 13

How it works...

In this recipe, we are using list comprehensions to extract potentially useful
geographic information contained in the user profiles of friends. With each
data element, we are asking two questions:

What percentage of profiles contain this information, as coverage is
important?
What form and, therefore, how useful is the information that is available
in the profiles?

We find that about 80 percent of profiles have a location set in their profile
(very promising) and an even higher percentage have a time zone set (an even
coarser grained geographic indicator). Of the last status update that is
captured in the user profile data, more than 90 percent is not geocoded even
though a third of user profiles (127/352) have geo_enabled set to True,
which means that users might sometimes opt to geocode a tweet. Thus, if we
harvested historical tweets for our friends, we should be able to get locations
for about a third of them, at best.

With the coverage established, we look back at the actual data available,
which paints a more complicated picture of the problem. The location
characteristic of the user profile is available in most profiles, but it is a
jumble of content. Some locations are a latitude and longitude value (highly
useful), some are a recognizable address as a text string, some are a city and
state, and some are not quite a traditional address format or even a location.
The time zone data appears to be less obviously problematic, but we would
still have to ensure that the time zone names captured by Twitter cleanly and
unambiguously map to real time zones.

There's more...

If we want to plot our friends on Twitter, we can do so using a few
approaches, listed as follows:

If we use the coordinates of geo-tagged tweets, we can immediately
jump to plotting. The only concern here is the sparsity of the data. To
ameliorate this situation, we should pull tweets for each friend in an
attempt to uncover more geo-tagged tweets. Doing this, we would
expect to uncover geographic data for as much as a third of our friends.
Although the location characteristic is quite messy, we can run the
results through a geocoding service such as Google Maps or Bing and
see what happens. Given the creativity of some of the locations in user
profiles, this might not be the most productive path possible.
Alternatively, we could attempt to pull out state abbreviations or ZIP
codes using regular expressions, but this too would be a bit messy and
time consuming.
Graphing the count of friends in different time zones can be really
interesting, and it would appear that this data might be easy to extract.
The one question that becomes relevant is how hard will it be to graph
time zones?

See also

You can also refer to the Users Twitter documentation at
https://dev.twitter.com/docs/platform-objects/users

https://dev.twitter.com/docs/platform-objects/users

Plotting geospatial data in Python

One of Python's greatest strengths is the number and diversity of available
packages that make many complex tasks simple, as someone else has already
written most of the code. As a result, we sometimes encounter the paradox of
choice where too many options confuse the issue and we just want one good
option. In this recipe, we will plot a set of latitude and longitude coordinates
using an excellent Python package: folium - that wraps a JavaScript library,
which is leaflet.js. You will learn more about folium further along in the
recipe.

Getting ready

You will need the geographic data extracted in the previous recipes (a set of
longitude and latitude coordinates). Also, we need to install the folium
package, which is shown in the following section, so you will need an
internet connection.

How to do it...

The following steps will help you convert the latitude and longitude data you
have to plot on a map:

1. Open your terminal. We need to install the Python package folium:

(sudo) pip install folium

2. Change to your source directory and start up IPython or your favorite
Python REPL. We first need to create two lists that will contain the
geographic data and the associated screen names that we will use for
labels. The following code is very similar to the last list comprehension
in the previous recipe, Exploring the geographic information available
in profiles, but is represented as a loop:

status_geo = []
status_geo_screen_names = []
for fp in friends_profiles:
 if ('status' in fp and fp['status']['geo'] is not None and
 'screen_name' in fp):
 status_geo.append(fp['status']['geo'])
 status_geo_screen_names.append(fp['screen_name'])

3. We now import the two libraries that we will need:

In [44]: import folium
 ...: from itertools import izip

4. We instantiate the Map object, setting the desired initial view location
and level of zoom, add markers and labels to the map in a loop, and
finally, render the map to HTML:

In [44]: map = folium.Map(location=[48, -102], zoom_start=3)
 ...: for sg, sn in izip(status_geo, status_geo_screen_names):
 ...: map.simple_marker(sg['coordinates'], popup=str(sn))
 ...: map.create_map(path='us_states.html')

5. Now, there should be an HTML file in your working directory. Double-
click on it and you should see something similar to what is shown in the
following screenshot:

How it works...

It is impressive that we went from less than a dozen lines of code to a fully
interactive map, complete with geographic markers denoting the location of
some of the users that follow us on Twitter. For this, we leveraged the power
of the folium Python package, which in turn, is a Pythonic wrapper for the
leaflet.js JavaScript library. Folium allows us to bind data from Python to

a map for choropleth visualizations or render markers at specific map
locations, as we did in the fourth step.

Folium uses the Jinja2 template package to create an HTML file containing a
very simple HTML page with a single div container that holds the map and
the customized JavaScript code in order to use the leaflet.js library. It is
the leaflet.js library that handles the actual map generation:

<!DOCTYPE html>
<head>
 <link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-
 0.5/leaflet.css" />
 <script src="http://cdn.leafletjs.com/leaflet-
 0.5/leaflet.js"></script>

<style>
#map {
 position:absolute;
 top:0;
 bottom:0;
 right:0;
 left:0;
}
</style>
</head>
<body>
 <div id="map" style="width: 960px; height: 500px"></div>
<script>
var map = L.map('map').setView([48, -102], 4);

L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
 maxZoom: 18,
 attribution: 'Map data (c) OpenStreetMap
 contributors'
}).addTo(map);

var marker_1 = L.marker([38.56127809, -76.04610616]);
marker_1.bindPopup("Pop Text");
map.addLayer(marker_1)

</script>
</body>

We highly recommend that you take a closer look at both the additional

features of folium (and leaflet.js) and the underlying source code of this
library.

There's more...

Visualizing geographic data is complex. Not only do you need the ability to
render one or more complex coordinate systems, but you also need the
original map data that defines countries, roads, rivers, and anything else you
might want on display, in addition to your own data. We are fortunate that
Python provides so many options when tackling this problem.

These packages tend to fall into two broad categories. The first class of
geospatial visualization packages arose out of scientific and research needs
that have existed for decades. For this software, the renderer and the required
geographic data reside on the user's local machine. This typically necessitates
the compilation and installation of several additional layers of the software in
order to get the Python package working.

The very powerful Matplotlib Basemap Toolkit is an excellent example of
this. Browsing the instructions, we see numerous dependencies. While we
have already handled matplotlib and NumPy, two additional requirements -
GEOS and Proj4 map library-stand out as potentially problematic. The C++
source code for the Geometry Engine - Open Source (GEOS) is actually
included with the basemap, but it must be compiled and built separately. This
need to compile software in another language is a giant red flag. For Python
packages, this often leads one down a rabbit hole of compile errors and
technical issues (missing header files, slightly nonstandard directory
structures, wrong compiler, and so on) that can take hours or days to resolve.
If you are on mac OS X, especially Mavericks, you are in for even more fun,
as Apple has a tendency to make slight alterations with each release, which
break previously functional make files. As a result, we chose a mapping
library from category two, which is described as follows.

The second class of the package provides a Pythonic way of interacting with
a JavaScript library that actually handles the rendering of maps and data. This
often requires us to output our results as HTML, which is more often than not
fine. These JavaScript libraries themselves fall into two categories. First,

there are more pure mapping libraries such as Google Maps and Leaflet.js
that were built to render maps online but can be repurposed for more
specialized geospatial data visualization needs. Second, there is D3.js, the
all-purpose library for manipulating documents based on data that is capable
of some beautiful geographic visualization. We chose folium due to its
simplicity and elegance; when software works, it makes our lives and
analyses easier.

See also

You can also refer to the following:

The GEOS home page at http://trac.osgeo.org/geos/
The Cartopy home page at http://scitools.org.uk/cartopy/
The Shapely home page at http://toblerity.org/shapely/
The Kartograph home page at http://kartograph.org/
The Leaflet.js home page at http://leafletjs.com/ï»¿

http://trac.osgeo.org/geos/
http://scitools.org.uk/cartopy/
http://toblerity.org/shapely/
http://kartograph.org/
http://leafletjs.com/

Chapter 10. Forecasting New Zealand
Overseas Visitors
In this chapter, we will cover the following recipes:

Creating time series objects
Visualizing time series data
Exploratory methods and insights
Trend and season analysis
ARIMA modeling
Accuracy assessment
Fitting Seasonal ARIMA modeling

Introduction

Weather prediction, Sensex prediction, sales prediction, and so on, are some
of the common problems that are of interest to most who look up to Statistics
or Machine Learning methods. The purpose is, of course, to get the prediction
for the next few periods using models with reasonable accuracy. Weather
prediction helps in planning for the vocational trip, Sensex prediction helps in
investment planning, and sales prediction in an optimum inventory planning.
The common structure among each of the three problems is that the
observations are available, in general, at equally spaced time/epoch. The
observations may have been obtained on a daily, weekly, or monthly basis
and we will refer to such data as time series data. The observations are
collected over a long time in the past and we believe that we have captured
enough characteristics/traits of the series so that analytical models built on
such historic data will have predictable power and we can obtain fairly
accurate forecasts.

The structure of time series data possesses new challenges and it can't be
analyzed with methods as discussed earlier in the book. The major challenge
arises from the fact that the observations obtained at regular intervals can't be
treated as independent observations. For example, the rain on successive days
depends on the recent past as we have a logical belief, and complemented
with our empirical experience too, the rain intensity for tomorrow depends on
today's rain and that it is not the same if today had rain or it was very sunny.
If one accepts conceptually that the observations are not independent of each
other, how does one specify the dependency? First, we consider the New
Zealand overseas visitor's data.

A trip to a foreign locale is always fascinating, and especially if they are
holiday trips. For the tourism department of any country, it is important to
know the trend of the overseas travelers to their country so that the logistics
can be worked out. A lot of other work is also related with the overseas
visitors, for instance, the ministries may be interested to know if the visitors
for the next quarter would increase or decrease. The tourism department

needs to factor in various facets of the industry, for example, is there a yearly
growth? Is there seasonal factor, such as summer time during which the travel
is maximum?

The osvisit.dat, available at multiple web links
https://www.stat.auckland.ac.nz/~ihaka/courses/726-/osvisit.dat and
https://github.com/AtefOuni/ts/blob/master/Data/osvisit.dat, consists of the
overseas visitors to New Zealand. The data is collected at monthly level and
it begins at January 1977 and continues up to December 1995. Thus, we have
228 monthly numbers of the visitors. The following questions arise, which
will be addressed through the recipes in this chapter:

How does one visualize time series data?
How do you identify if the data has trend and seasonal components?
What are the measures of relationships that capture the dependent nature
of time series data?
How do you build the appropriate model for the data?
Which tests need to be applied for validating the assumptions of the
model?

In the next recipe, we will show what ts objects are and how does one set up
such objects from raw data.

https://www.stat.auckland.ac.nz/~ihaka/courses/726-/osvisit.dat
https://github.com/AtefOuni/ts/blob/master/Data/osvisit.dat

The ts object

The core R package datasets contains lot of datasets that are essentially time
series data: AirPassengers, BJsales, EuStockMarkets, JohnsonJohnson,
LakeHuron, Nile, UKgas, UKDriverDeaths, UKLungDeaths, USAccDeaths,
WWWusage, airmiles, austres, co2, discoveries, lynx, nhtemp, nottem,
presidents, treering, gas, uspop, and sunspots. The AirPassengers data
is one of the most popular datasets and it is used as a benchmark dataset. The
data can be loaded in an R session with data(mydata) and its class can be
verified as time series as follows:

data(JohnsonJohnson)
class(JohnsonJohnson)

[1] "ts"
JohnsonJohnson
Qtr1 Qtr2 Qtr3 Qtr4
1960 0.71 0.63 0.85 0.44
1961 0.61 0.69 0.92 0.55
1962 0.72 0.77 0.92 0.60
1978 11.88 12.06 12.15 8.91
1979 14.04 12.96 14.85 9.99
1980 16.20 14.67 16.02 11.61

frequency(JohnsonJohnson)
[1] 4

The JohnsonJohnson dataset is a time series dataset and it is verified by
applying the class function. Details about the dataset can be obtained by
running ?JohnsonJohnson at the R terminal. This time series contains the
quarterly earnings of the company Johnson & Johnson for the period 1960-
80. Since we are having quarterly earnings, the frequency of the time series is
four per year and this is verified by using the function frequency on the ts
object. The reader may carry out similar exercise for the rest of the datasets
given at the beginning of the section.

A few questions are in order now. If we have raw datasets, how do we import
them in R? As the imported dataset would be either a numeric vector or a

data.frame, how do we change them into ts objects? As we see that the
JohnsonJohnson time series begins at 1960 and ends at 1980, and it is a
quarterly data, how does one specify such characteristics for a new ts data
object? The next recipe will address all these questions.

Getting ready

We assume that the reader has the osvisit.dat file in the R working
directory. This file has been obtained from
https://github.com/AtefOuni/ts/blob/master/Data/osvisit.dat and the reader
can use the same source too.

How to do it

The raw data is converted to a desired ts object through the following steps:

1. Import the data into R using the read.csv utils function:

osvisit <-read.csv("osvisit.dat",header=FALSE)

2. Convert the preceding data.frame to a ts object with:

osv <-ts(osvisit$V1,start =1977,frequency =12)
class(osv)
[1] "ts"

3. Display the first four years' data using the window function:

window(osv,start=c(1977,1),end=c(1980,12))

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
1977 48176 35792 36376 29784 21296 17032 22804 27476 21168 29928 37516
1978 44672 40500 36608 28524 23060 15760 20892 28992 23048 35052 40564
1979 49968 42068 41512 29272 25868 18216 23166 29808 25232 33780 43916
1980 48224 51353 46784 31284 26681 22817 26944 32902 25567 37113 44788
Dec
1977 62156
1978 69304
1979 69576
1980 70706

https://github.com/AtefOuni/ts/blob/master/Data/osvisit.dat

How it works...

The read.csv function helps in importing the data from external files to an R
data.frame object, here osvisit. We knew that the data observations in this
study is in the period January, 1977 to December, 1995, and that for each
year we have 12 monthly observations of the visitors count to New Zealand.
Thus, we first used the ts function to convert the data.frame object into a
time series ts object as osv. The beginning of the study period is specified
with the start = option and the time series periodicity is defined through
frequency = 12. The class function is then applied over the osv object to
verify that we have successfully converted the data.frame into a ts object
and that the frequency is also correct. In the last step, we intend to view the
data for the period 1977-80 and using the window function, we subset the time
series and display the data at the console with the arguments start and end.

It can be thus seen that the numeric vectors/data frames can be converted into
time series object using the ts function. The frequency argument helps us to
define the cycle of the time series such as weekly, monthly, or quarterly. As
required, the time stamp can also be specified. We will now look at methods
of visualizing the time series data in the next recipe.

Visualizing time series data

Visual depiction of time series is important to get early insights into the
nature of the data. Visualization of time series is very simple in the sense that
simply plotting the time series variable against the time itself gives insight
about the behavior of the data. The R function plot.ts can be applied on the
ts objects and the time series can be visualized. For the overseas visitors
problem, we plot the number of visitors for the month against that time
instance.

Getting ready

The reader needs to have the osv object from the previous session in the
current environment.

How to do it...

1. We will now apply the plot.ts function to obtain the visual depiction
of the overseas data.

2. Run the following line in the R session:

plot.ts(osv, main="New Zealand Overseas Visitors",ylab="Frequency")

The output given by running the R line is shown in the following diagram:

It may be seen from the diagram that a certain pattern is recurrent and that
cycle appears as 12 data points or a year. Also, it appears from the data that
year-on-year, the visitors count is increasing. However, we would like to find
which month sees the highest number of visitors, and other such patterns. In
this direction, we would plot the visitors count against the month and then
repeat the exercise for all the years.

3. Define the month frame and for each year plot the visitors count against
the month number:

mt <-1:12
names(mt) <-month.name
windows(height=20,width=30)
plot(mt,osv[1:12],"l",col=1,ylim=range(osv),ylab="Overseas Visitors"
for(i in2:19)points(mt,osv[mt+(i-1)*12],"l",col=i)
legend(x=4,y=190000,legend=c(1977:1982),lty=1:6,
col=1:6)
legend(x=6,y=190000,legend=c(1983:1988),lty=7:12,

col=7:12)
legend(x=8,y=190000,legend=c(1989:1995),lty=13:19,
col=13:19)
points(mt,osv[mt+(i-1)*12],pch=month.abb)

The resulting diagram is given as follows:

The working of the R program is given in the How it works ... section. We
can see that we have a peak in the month of July and then during the
December-February period. Though the default plot.ts gives good insight,
we can also better understand the time series by plotting the year-on-year
monthly sales too. A unified insight from the two diagrams is that we are
having a trend as well as seasonal impact on the overseas visitor. It is
possible in R to alienate the seasonal and trend impact from the time series
data. Such an analysis is provided by the stl function.

4. Decompose the time series into trend, seasonal, and irregular parts as
follows:

osv_stl <-stl(osv,s.window=12)

plot.ts(osv_stl$time.series)

The decomposed time series plot looks as follows:

The STL decomposition shows how the trend and seasonal terms vary over
the years.

How it works...

For the first diagram, the time series plot is enhanced with the right title and
y-axis name through the options main and ylab. Default settings almost
always produce bland output. After ascertaining the trend effect over the
years, we plot the year-wise month-on-month plot. To obtain the second
diagram, we first created an mt variable, which takes the values 1, 2, ..., 12.
The windows option produces a good framework on the computer screen
though the R markdown Microsoft Word is not equally impressive. At the

beginning, we plot only 1977 years' visitors count against the month and then
using the for loop, the yearly visitors count is imposed on the scatter plot.
The ylim option ensures that we have enough range in the y-axis to visualize
all the time points. The legend option gives nice indication of the color-year
combination. Finally, using month.abb we can check which month of the
year has the peak visitors.

In the stl decomposition, we get three components, seasonal, trend, and
irregular components. It may be seen that the original time series would be
the sum of these three components, run
round(rowSums(osv_stl$time.series),1)==osv. It can be seen from the
STL decomposition diagram that the variance in each of the components is
increasing in time. We will now consider a simple linear regression model
approach for understanding the trend and seasonal impact on the visitors
count.

Simple linear regression models

Linear regression models can be built to obtain preliminary insight about the
trend and seasonal impact on the time series variable. The trend and seasonal
components are specified as independent variables while the time series,
visitors count here, is the dependent variable. We make the following
assumptions while building the linear regression model:

1. The time series is linear in the trend and seasonal variables.
2. The trend and seasonal components are independent of each other.
3. The observations, time series values, are independent of each other.
4. The error associated with the observation follows normal distribution.

Let Yt 1 < t < T, denote the time series which observations at the time points
1, 2, ..., T. For example, in our overseas visitors data, we have T = 228. In the
simplistic regression model, the trend variable is the vector 1, 2, ..., T, that is,
XTr = (1, 2, ..., T). We know that for monthly data, we have the month name
as the seasonal indicator, that is, if we have monthly data with 24
observations starting from January of one year and ending on December the
next year, the values of seasonal variable would be January, February, ...,
November, December, January, February, ..., November, December. Thus,
seasonal variables would be a categorical variable. Similarly, if we have
quarterly data, the seasonal variables would have observations as Quarter 1,
Quarter 2, Quarter 3, and Quarter 4. We indicate the seasonal variable by Xse,
and some examples of the seasonal variable are Xse = (Jan, Feb, ..., Nov, Dec,
Jan, Feb, ..., Nov, Dec) and Xse = (Q1,Q2, Q3, Q4, Q1, Q2, Q3, Q4). The linear
regression model incorporating the trend and seasonal variables would be
then given by

We will next build the trend and seasonal linear regression model for the
overseas visitors dataset. The core function would be the lm function.

Getting ready

The osvts object needs to be there in the current R environment.

How to do it...

Defining the trend and seasonal variables, we would be able to build the
linear models. We would build three linear models here:

with the trend variable,
with the seasonable variable, and
with both variables:

1. Create R objects osv_time and osv_mths for the trend and seasonal
variables:

osv_time <-1:length(osv)
osv_mths <-as.factor(rep(month.abb,times=19))

Using the length function, we now have a numeric vector with values
starting from 1 and ending at 228. The seasonal variable is created with the
rep function, which repeats the month name 19 times successively. The
month.abb is a standard character vector in R that has the month
abbreviations as its content.

2. Create the linear model using the trend variable only and produce its
summary:

osv_trend <-lm(osv~osv_time)
summary(osv_trend)

##
Call:
lm(formula = osv ~ osv_time)
##
Residuals:
Min 1Q Median 3Q Max
-33968 -13919 -3066 10497 79326
##
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20028.62 2585.63 7.746 3.17e-13 ***
osv_time 385.36 19.58 19.683 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 19460 on 226 degrees of freedom
Multiple R-squared: 0.6316, Adjusted R-squared: 0.6299
F-statistic: 387.4 on 1 and 226 DF, p-value: < 2.2e-16

3. The p-value, in the last line of preceding R output, associated with the
F-statistic is significant, which indicates the overall model is
significant. The p-value associated with osv_time is also small, which
implies that the trend impact is significantly different from 0. The R2 is
about 63%, which is the percent of variation in visitors count as
explained by the trend variable. We will now look at the seasonable
variable.

4. Create the linear model with the seasonal variable and produce its
summary:

osv_season <- lm(osv~osv_mths)
 summary(osv_season)

 ##
 ## Call:
 ## lm(formula = osv ~ osv_mths)
 ##
 ## Residuals:
 ## Min 1Q Median 3Q Max
 ## -45099 -23919 -2738 17161 79961
 ##
 ## Coefficients:
 ## Estimate Std. Error t value Pr(>|t|)
 ## (Intercept) 57116 6277 9.100 < 2e-16 ***
 ## osv_mthsAug -4226 8877 -0.476 0.6345
 ## osv_mthsDec 50139 8877 5.648 5.07e-08 ***
 ## osv_mthsFeb 20143 8877 2.269 0.0242 *
 ## osv_mthsJan 17166 8877 1.934 0.0544 .
 ## osv_mthsJul -5670 8877 -0.639 0.5236
 ## osv_mthsJun -15351 8877 -1.729 0.0852 .
 ## osv_mthsMar 13799 8877 1.555 0.1215

 ## osv_mthsMay -12883 8877 -1.451 0.1481
 ## osv_mthsNov 19286 8877 2.173 0.0309 *
 ## osv_mthsOct 7190 8877 0.810 0.4188
 ## osv_mthsSep -5162 8877 -0.582 0.5615
 ## ---
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
 ## Residual standard error: 27360 on 216 degrees of freedom
 ## Multiple R-squared: 0.3038, Adjusted R-squared: 0.2683
 ## F-statistic: 8.567 on 11 and 216 DF, p-value: 1.63e-12

5. The seasonal variable is a factor variable and hence we have the variable
summary at 11 levels of the factor variable. Since some of the factor
levels are significant, the overall variable is significant though the R2 is
very poor at 30%. We will now include both the variables in the next
step.

6. Create the linear model with trend and seasonal variables and produce
its summary:

osv_trend_season <- lm(osv~osv_time+osv_mths)
 summary(osv_trend_season)
 ##
 ## Call:
 ## lm(formula = osv ~ osv_time + osv_mths)
 ##
 ## Residuals:
 ## Min 1Q Median 3Q Max
 ## -17472 -5482 -1120 3805 38559
 ##
 ## Coefficients:
 ## Estimate Std. Error t value Pr(>|t|)
 ## (Intercept) 14181.157 2269.500 6.249 2.19e-09 ***
 ## osv_time 383.346 8.944 42.860 < 2e-16 ***
 ## osv_mthsAug -5759.017 2880.198 -2.000 0.0468 *
 ## osv_mthsDec 47072.650 2880.864 16.340 < 2e-16 ***
 ## osv_mthsOct 4890.027 2880.475 1.698 0.0910 .
 ## osv_mthsSep -7078.837 2880.323 -2.458 0.0148 *
 ## ---
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
 ## Residual standard error: 8877 on 215 degrees of freedom
 ## Multiple R-squared: 0.927, Adjusted R-squared: 0.923

 ## F-statistic: 227.7 on 12 and 215 DF, p-value: < 2.2e-16

7. Note that here the model and both variables are significant. Also, the R2,
as well as the Adj R2, increases to 93%. Thus, both the variables are
useful for understanding the visitors count.

8. However, there are some hurdles with the linear model approach. The
first problem is a conceptual one and that the assumption of
independence looks very unrealistic. Also, if we look at the empirical
residual distribution, which are estimates of the error term, the normality
assumption looks out of place here.

9. Use the residuals function on the fitted models and the hist graphical
function for depicting the error distributions:

windows(height =24,width=20)
par(mfrow=c(3,1))
hist(residuals(osv_trend),main ="Trend Error")
hist(residuals(osv_season),main="Season Error")
hist(residuals(osv_trend_season),main="Trend+Season Error")

It is seen from the preceding histograms that the normality assumption for
error is not appropriate for the time series data.

How it works...

The lm function in R is useful to fit linear models. A formula is central to
build the linear model and its generic form isÂ lhs ~ rhs. The term on the

left side of tilde ~ is taken as the dependent variable and the right as
independent variable(s) or covariates. The details of lm can be fetched with ?
lm. The function summary gets more details of the fitted models and we have
used it three times here to see how each of the models perform on the data.
To validate the normality assumption for the error distribution, we obtain the
histogram by hist(residuals(lm),...).

See also

The dependence among the observations is the main complexity of time
series data and overlooking it would lead to erroneous conclusions. We will
next consider methods and measures that help us construct models that
incorporate the dependent nature of time series.

ACF and PACF

We have the time series Yt 1 < t < T which may be conceptualized as a
stochastic process Y observed at times 1 < t < T. If a process is observed at
successive times, it is also plausible that the process value at time t depends
on the process values at time t-1, t-2, The specification of the dependency
is the crux of time series modeling. As in the regression models, we have the
error process inÂ Îµt, 1 < t < TÂ which is generally assumed to be white-
noise process. Now, the process/time seriesÂ Yt 1 < t < T may depend on its
own past values, or on the past error terms. The two measures/metrics useful
in understanding the nature of dependency are the Autocorrelation function
(ACF) and Partial-autocorrelation function (PACF). We need the lag
concept first though. For the processÂ Yt 2 < t < T the lag 1 process isÂ Yt-1,
1 < t < T - 1 . In general, for the variable Yt the k-th lag variable is Yt-k. The
lag k ACF is defined as the correlation between the random variable Yt and
the k-th lagged variable Yt-k:

whereÂ

is the variance of the time series. The partial autocorrelation function PACF
between Yt and its' k-th lag Yt-k is the partial correlation of the time series
while controlling the values at shorter lags Yt-1, Yt-2, ..., Yt-k+1. It is not
possible to go into the mathematical details of the PACF concept and the
reader may refer to Box, et al. (2015). The ACF and PACF values help in
determining the terms of the error variables or the time series. We consider
the simple random walk as an example of time series to understand these
concepts.

Let the sequence of white noise (error) be Îµt, 1 < t < T and the observed
time series/random walk be

Yi = Îµ1Â + Îµ2 + ... + Îµi, 1 < i < T

Note that the series can also be (re)written as

Yi = Yi-1 + Îµi, 1 < i < T.

Thus, the Yi value is seen to be dependent on the previous i errors, or the Yi-1
value and current error. We will next simulate a random walk and obtain the
ACF and PACF plots in R.

Getting ready

An open R session is all that is required.

How to do it...

First we simulate 500 (pseudo-) observations of a random walk and then
visualize it. Applying acf and pacf functions, we then examine the nature of
the plot.

1. First set the seed to the number 12345:

set.seed(12345)

2. Simulate 500 observations from standard normal distribution and
compute the random walk at each epoch by taking the cumulative sum:

y <-rnorm(500)
rwy <-cumsum(y)

3. Visualize the time series and then apply the acf and pacf function on
the random walk created in the previous step:

windows(height=24,width=8)
par(mfrow=c(3,1))

plot.ts(rwy,main="Random Walk")
acf(rwy,lag.max=100,main="ACF of Random Walk")
pacf(rwy,main="PACF of Random Walk")

4. The resulting diagram is given as follows:

Note

The ACF and PACF are effective tools in suggesting the type of
model that may be generating the time series. For example, we
can find here that the influence of the past observations Yt-1's is
on a decline, whereas if we look at the partial correlation, only
the previous one observation is important and the rest are all zero.
The observations here are in lieu with the theoretical ACF and
PACF, see
http://stats.stackexchange.com/questions/87000/sample-acf-and-
pacf-of-a-random-walk for example.

How it works...

The set.seed function is used to ensure reproducibility of the program and
rnorm and cumsum together give us the necessary random walk. The functions

http://stats.stackexchange.com/questions/87000/sample-acf-and-pacf-of-a-random-walk

acf and pacf are essential time series functions that would be required in
almost all the time series analysis. The lag.max=100 option has been used to
show that the acf is indeed on a decline, which is not very apparent if we
take the default settings.

ARIMA models

In the previous section, we saw the random walk and the role of ACF and
PACF functions. The random walk may be seen as a series that depends on
past observations as well as past errors. It is thus possible to visualize time
series as functions of past observations, errors, or both. In general, given the
time series Yt, 1 < t < T and the error process Îµt,Â 1 < t < T a linear process
is defined as:

The termsÂ

are the coefficients of linear processes. Now, suppose that we are interested
in a model where Yt depends on the past p observations:

The preceding model is well known as the autoregressive model of order p
and it is denoted by AR(p). It is important to note here that the AR
coefficientsÂ

are not unrestricted and we simply note that their absolute values need to be
less than 1 if the time series is assumed to be stationary. Next, we define the
moving average model of order q, abbreviated as MA(q), as:

The parameters of the MA(q) model are

. It is indeed possible that a time series may depend on past observations as
well as errors and such models can be captured through autoregressive
moving average model, denoted by ARMA(p,q), and given by:

The theoretical ACF and PACF can be obtained for the ARMA models. The
following table shows the expected behavior of ACF and PACF for such
models:

To understand the nature of ACF and PACF in the context of ARMA models,
we simulate observations using the arima.sim function and plot the
corresponding ACF and PACF and check for the behavior suggested in the
preceding table.

Getting ready

The reader will need the R session and the osv object that was created earlier.

How to do it...

AR(1), MA(1), and ARMA(1,1) models are simulated first and the ACF and
PACF plots are obtained:

1. First set the seed to the number 123. Produce three time series AR(1),
MA(1), and ARMA(1,1):

set.seed(123)
t1 <-arima.sim(list(order =c(1,0,0),ar =0.6),n =100)
t2 <-arima.sim(list(order =c(0,0,1),ma =-0.2),n =100)
t3 <-arima.sim(list(order =c(1,0,1),ar =0.6,ma=-0.2),n =100)

tail(t1);tail(t2);tail(t3)#output suppressed

The underlying AR(1) model for t1 is

and similarly for t2 and t3, the associated underlying models are:

2. Obtain the ACF and PACF plots of t1, t2, and t3:

windows(height=30,width=20)
par(mfrow=c(3,2))
acf(t1);pacf(t1)
acf(t2);pacf(t2)
acf(t3);pacf(t3)

3. The resulting diagram is as follows:

The t1 object is simulated as an AR(1) process and the theoretical ACF is
expected to die down or tail off while the theoretical PACF must have a cut
off after one lag. We see this behavior in the empirical ACF and PACF of t1.

Similarly, the ACF and PACF of t2 is seen to respectively have a cut off
after lag 1 and gradual decline, which suggests that MA(1) is an appropriate
model. Also, the ACF and PACF plots of series t3 shows expected behavior
in the theoretical quantities and thus suggesting that an ARMA model might
be appropriate. Note that the order of the ARMA model is not reflected by
the correlation plots.

4. The reader should ask the questions about what happens if the absolute
value of the autoregressive coefficients value is more than 1. Run the
next two lines in R and draw an appropriate conclusion:

arima.sim(list(order =c(1,0,0),ar =1.6),n =100) arima.sim(list(order =

We will next look at the ACF and PACF plot of osv.

5. Apply the acf and pacf functions on osv:

windows(height=10,width=20)
par(mfrow=c(1,2))
acf(osv)
pacf(osv)

6. The resulting diagram is as follows:

Note

Note the change in the scale of the x-axis in the preceding
diagram. In the earlier ACF and PACF diagrams, we had the
range of the x-axis varying from 0 to 20 or more as lag.max
specified. Here, though we are still having the ACF's and PACF's
calculated from 20 lags, the range is from 0 to 2 with fractional
values 0.5 and 1.5 too. This is because we are having the
frequency=12 for the osv time series object.

Here, the ACF and PACF plot is anything but the description of ARMA
models as detailed in the earlier table. The ACF is having a cyclic behavior
and the PACF does not conclusively say if there is a decline after certain lag.
Recall from the time series plot of the osv that we had an increasing average
mean (as well as variance). In simple terms, the behavior of the time series is
changing over time and thus we have non-stationary data. In many practical
scenarios, stationary can be obtained by differencing the series Yt, that is,
instead of modeling for Yt, we consider the difference Yt- Yt-1. The difference
Yt- Yt-1 is first order difference and sometimes one may require higher order
difference, and in most practical scenarios, differencing up to order 4 has
been noted to bring stationary. The order of difference is generally denoted
by letter d and applying ARMA models on the difference is referred as
autoregressive integrated moving average model, or ARIMA model. A
succinct abbreviation is ARIMA(p,d,q). In the next steps, we will build AR,
MA, and the ARIMA model for the overseas visitor data.

The ar function when applied on a time series object automatically selects
the order p and the models are fit by using the Yule-Walker method.

7. Apply the ar function on the osv object:

osv_ar <-ar(osv)
osv_ar
Call:
ar(x = osv)
##
Coefficients:
1 2 3 4 5 6 7 8

0.6976 0.1015 -0.0238 0.0315 0.0106 -0.1569 0.0183 0.1238
9 10 11 12 13
0.0223 0.0279 -0.0039 0.6398 -0.5227
##
Order selected 13 sigma^2 estimated as 123787045

The AR order p is selected as 13. Next, we look at the residuals of the fitted
model and check whether the normality assumption holds good.

8. Obtain the histogram of the residuals and look at the ACF plot of the
residuals:

windows(height=10,width=20)
par(mfrow=c(1,2))
hist(na.omit(osv_ar$resid),main="Histogram of AR Residuals")
acf(na.omit(osv_ar$resid),main="ACF of AR Residuals")

The histogram and ACF plots look as follows:

The histogram looks skewed and the ACF suggests that there is dependency
among the residuals, which violates the assumption of the AR model.

Unlike the ar function, we don't have one for fitting moving average models
that would automatically select the order q. Thus, we first define a new
function that would try to find the best model for a given maximum error lag

among the moving average models by the aic criteria.

9. Define the auto_ma_order function and find the best moving average
model for osv data as follows:

auto_ma_order <-function(x,q){
aicc <-NULL
for(i in1:q) {
tmodel <-arima(x,order=c(0,0,i))
aicc[i] <-as.numeric(tmodel$aic)
}
return(which.min(aicc))
}
auto_ma_order(osv,15)

[1] 14

There might be a technical reason for which an auto moving-average model
fitting function is not defined. It generally happens that the auto_ma_order
function finds the best moving average lag at the maximum lag as is seen
next.

10. For the osv time series data, find the best moving average model for
various maximum lags:

sapply(1:20,auto_ma_order,x=osv)

[1] 1 2 3 4 5 6 6 8 9 9 9 9 13 14 14 16 17 18 18 20

Since the auto_ma_order function generally finds the best order at the
maximum lag, it is not a useful function. For the mathematical reason behind
this behavior, the reader should consult a good time series book like Box, et
al. (2015). Now, we fit ARIMA models of various orders.

11. Fit three ARMA models and three ARIMA models for the osv data:

ARIMA Model Fitting
osv_arima_1 <-arima(osv,order=c(1,0,1))
osv_arima_2 <-arima(osv,order=c(2,0,1))
osv_arima_3 <-arima(osv,order=c(1,0,2))
osv_arima_4 <-arima(osv,order=c(1,1,1))
osv_arima_5 <-arima(osv,order=c(2,1,1))
osv_arima_6 <-arima(osv,order=c(1,1,2))

osv_arima_1; osv_arima_2; osv_arima_3

##
Call:
arima(x = osv, order = c(1, 0, 1))
##
Coefficients:
ar1 ma1 intercept
0.9030 0.0008 68427.30
s.e. 0.0348 0.0659 10168.16
##
sigma^2 estimated as 233640077: log likelihood = -2521.06, aic = 5050.13

##
Call:
arima(x = osv, order = c(2, 0, 1))
##
Coefficients:
ar1 ar2 ma1 intercept
-0.0871 0.9123 0.9931 68374.33
s.e. 0.0306 0.0306 0.0091 10714.84
##
sigma^2 estimated as 216211876: log likelihood = -2513.14, aic = 5036.27

 ##
Call:
arima(x = osv, order = c(1, 0, 2))
##
Coefficients:
ar1 ma1 ma2 intercept
0.8755 0.0253 0.1315 67650.666
s.e. 0.0428 0.0792 0.0607 9106.606
##
sigma^2 estimated as 229397770: log likelihood = -2518.99, aic = 5047.98

osv_arima_4; osv_arima_5; osv_arima_6

##
Call:
arima(x = osv, order = c(1, 1, 1))
##
Coefficients:
ar1 ma1
-0.602 0.5313
s.e. 0.356 0.3761
##
sigma^2 estimated as 2.41e+08: log likelihood = -2512.67, aic = 5031.35

##
Call:
arima(x = osv, order = c(2, 1, 1))
##
Coefficients:
ar1 ar2 ma1
-0.2669 0.0912 0.2256
s.e. 0.4129 0.0743 0.4103
##
sigma^2 estimated as 239665946: log likelihood = -2512.07, aic = 5032.13

 ##
Call:
arima(x = osv, order = c(1, 1, 2))
##
Coefficients:
ar1 ma1 ma2
-0.4164 0.3784 0.0901
s.e. 0.2893 0.2920 0.0703
##
sigma^2 estimated as 239508475: log likelihood = -2511.99, aic = 5031.99

The AIC values for the six different models are 5050.13, 5036.27, 5047.98,
5031.35, 5032.13, and 5031.99. An auto.arima function is available in
Hyndman's forecast package, which within maximum p, d, and q values,
finds the best ARIMA model. However, there are other metrics for time
series modeling and AIC might not be the best evaluation method. Some of
the measures are defined in the next section.

How it works...

In this section, for simulation purposes the arima.sim function is useful and
the options list, order, ar, ma, and n are useful as required. The acf and
pacf function can be used to obtain the necessary correlation plots. We used
the ar function to find the best auto-regressive model. Moving average
models can be fit using the arima function and specifying the model order
through the order option. Residuals of the fitted ar object can be extracted
with ar_fit$resid.

Accuracy measurements

Model selection in regression models is addressed through the use metrics
such as aic, bic, and so on. Though we have earlier used such models for
selecting the models, it is important to note that the general purpose of time
series is forecasting. Thus, time series modeling has some customized
metrics, which are useful for forecasting purpose. Here, a comparison is
made between the actual values and the fitted values.

To get the perspective, we have the time series inÂ Yt, 1 < t < T and suppose
that the forecast values by virtue of using a certain model, say AR(p), MA(q),
or ARIMA(p,d,q), for the time series is

. We can then capture the fit of the model by comparing

. The residuals due to the model is defined by

. The accuracy measurements are then defined as follows:

The computations would be performed using raw codes.

Getting ready

The R object osv would be required in the current R environment. The reader
will require the ARIMA objects osv_arima_1, osv_arima_2, osv_arima_3,
and osv_arima_4. The R package forecast will also be required.

How to do it...

The accuracy measurement formulas are straightforward to calculate and we
use the residuals function to simplify our program.

1. The functions mean, sqrt, abs, residuals, and accuracy from the
forecast package are used to obtain the accuracy measurements:

mean(residuals(osv_arima_1))# Mean Error
[1] 106.6978
sqrt(mean(residuals(osv_arima_1)^2))# Root Mean Square Error
[1] 15285.29

mean(abs(residuals(osv_arima_1)))# Mean Absolute Error
[1] 11672.7
mean(residuals(osv_arima_1)/osv)*100# Mean Percentage Error
[1] -5.35765
mean(abs(residuals(osv_arima_1)/osv))*100# Mean Absolute Percentage Error
[1] 19.04502
accuracy(osv_arima_1)
ME RMSE MAE MPE MAPE MASE
Training set 106.6978 15285.29 11672.7 -5.35765 19.04502 0.9717733
ACF1
Training set 0.004153521
mean(abs(residuals(osv_arima_2)/osv))*100
[1] 19.01274
mean(abs(residuals(osv_arima_3)/osv))*100
[1] 18.75919
mean(abs(residuals(osv_arima_4)/osv))*100
[1] 19.01341

Using the MAPE criteria, one would use osv_arima_3 as it has the least
value among the four models. We can also see that the calculations from the
raw codes matches with the accuracy function from the forecast package.

How it works...

The accuracy measurements formulas have been straightforward to
implement. It is important that one uses such metrics when analyzing time
series data. The raw codes show the formula implementation though the
simple accuracy function also provides the solution.

In general, the MAPE metric is more effective and widely used. However, the
MAPE for the four models varies in the range 18.76% to 19.05%. Seasonality
is a huge factor and we would like to build ARIMA models that account for
such factors and this forms the topic of discussion in the next section.

Fitting seasonal ARIMA models

The meaning of ARIMA models for the monthly overseas visitors is that past
observations and errors have impact on the current observation. The order of
13 as suggested by the ar function applied on the osv data indicates that the
monthly visitor count of the previous year also influences the visitors this
month. However, it looks intriguing that the visitor count for each of the past
13 months should have an influence. Also, this increases the model
complexity and we would prefer meaningful models based on as less past
observations as possible. Note that the variance of the fitted models has been
very large and we would like to reduce the variance too.

A good and appealing approach to integrate the seasonal impact is to use the
seasonal-ARIMA model, see Chapter 10 of Cryer and Chan (2008). To
understand how seasonal-ARIMA models work, we will consider the simple
seasonal AR models first. Here, we allow the past few Yt's to influence the
current Yt and then the past few corresponding seasonal Yt's. For example, let
p = 3 and the frequency of the time series is say 12 months and we want to
consider the impact of the past two seasonal terms. It means that Yt is now
influenced by Yt-1, Yt-2, Yt-3, Yt-12, Yt-24. It is customary to denote the seasonal
Yt lags by capital letter P. Similarly, the seasonal moving average model with
two moving average lags and three seasonal moving average lags consists of
εt-1, εt-2, εt-12, εt-24, εt-36. The seasonal moving
average lags is denoted by the capical letter Q, and similarly the difference by
D. The seasonal ARIMA models are generally denoted by (p, d, q)x(P, D, Q)
{freq}. The arima function can fit seasonal ARIMA models too and we will see
the action next.

Getting ready

If the reader has the osv object in the R environment, it will be sufficient.

How to do it...

Using the seasonal option in the arima function, we will build the seasonal
ARIMA models.

1. We build the seasonal models as follows: (1, 1, 0) x (0, 1, 0)12, (1, 1,
0)x(1, 1, 0)12,

(0, 1, 1)x(0, 1, 1)12, (1, 1, 0)x(0, 1, 1)12, (0, 1, 1)x(1, 1, 0)12, (1, 1, 1)x(1, 1,
1)12,

(1, 1, 1)x(1, 1, 0)12, (1, 1, 1)x(0, 1, 1)12.

osv_seasonal_arima2 <-arima(osv,order=c(1,1,0),seasonal=c(0,1,0))
osv_seasonal_arima3 <-arima(osv,order=c(1,1,0),seasonal=c(1,1,0))
osv_seasonal_arima4 <-arima(osv,order=c(0,1,1),seasonal=c(0,1,1))
osv_seasonal_arima5 <-arima(osv,order=c(1,1,0),seasonal=c(0,1,1))
osv_seasonal_arima6 <-arima(osv,order=c(0,1,1),seasonal=c(1,1,0))
osv_seasonal_arima7 <-arima(osv,order=c(1,1,1),seasonal=c(1,1,1))
osv_seasonal_arima8 <-arima(osv,order=c(1,1,1),seasonal=c(1,1,0))
osv_seasonal_arima9 <-arima(osv,order=c(1,1,1),seasonal=c(0,1,1))

2. Obtain the MAPE of all the models built in the previous step:

accuracy(osv_seasonal_arima2)[5]
[1] 5.525674
accuracy(osv_seasonal_arima3)[5]
[1] 5.206777
accuracy(osv_seasonal_arima4)[5]
[1] 4.903352
accuracy(osv_seasonal_arima5)[5]
[1] 5.113835
accuracy(osv_seasonal_arima6)[5]
[1] 4.946375
accuracy(osv_seasonal_arima7)[5]
[1] 4.603231
accuracy(osv_seasonal_arima8)[5]
[1] 4.631682
accuracy(osv_seasonal_arima9)[5]
[1] 4.5997

3. Among the models specified here, the order (1, 1, 1)x(0, 1, 1)12 leads to

the lease MAPE. Since it is often difficult to search for the best model
among different possible combinations ofÂ (p, d, q)x(P, D, Q)f, we use
the auto.arima function from the forecast package.

4. Use the auto.arima function to obtain the best model:

opt_model <-auto.arima(osv,max.p=6,max.q=6,max.d=4,max.P=3,max.Q=3
opt_model

Series: osv
ARIMA(5,1,3)(0,1,1)[12]
##
Coefficients:
ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma3
0.3732 0.5802 -0.2931 -0.3063 -0.2003 -0.8537 -0.6079 0.7898
s.e. 0.1172 0.1172 0.0931 0.0760 0.0853 0.0946 0.1348 0.0802
sma1
-0.4880
s.e. 0.0636
##
sigma^2 estimated as 17089028: log likelihood=-2093.09
AIC=4206.17 AICc=4207.25 BIC=4239.88

accuracy(opt_model)
ME RMSE MAE MPE MAPE MASE
Training set 236.9483 3929.388 2820.913 0.07114353 4.592125 0.5239947
ACF1
Training set -0.02654602

The preceding result suggests that the best seasonal ARIMA model is
ARIMA(5,1,3)(0,1,1)[12].

How it works...

The option of seasonal helps set up the desired seasonal order in the ARIMA
model. The auto.arima function helps in finding the best ARIMA model
within the specified lags for (p,d,q) and (P,D,Q).

There's more...

The scope of time series modeling is much beyond this short chapter. Box, et

al. (2015), Cryer and Chan (2008), and Chatfield (2003) are examples of
some of the excellent exposure to time series methods.

Chapter 11. German Credit Data Analysis
In this chapter, we will cover the following recipes:

Transforming the data
Visualizing categorical data
Discriminant analysis for identifying defaults
Fitting logistic regression model
A decision tree for the German Data
Finer aspects of decision trees

Introduction

Loans! A liability for the borrower and an asset for the bank! Banks would
certainly like to give only loans and not any of the savings schemes, such as
savings accounts, fixed deposits, recurring deposits, and so on. The simple
reason is that banks must pay the customer after some period and if they don't
earn enough, they can't give away the interest. Though the banks would like
to give away as many loans possibly can, there are plenty of reason that loans
would never be given on a first-come-first-serve basis. The apparently simple
reason being that if the customer defaults, the bank stands out as well as an
opportunity to serve a better customer. The obvious question is how does one
define a better customer and will analytical methods help here. A practical
data set is the German data set, which consists of the final status of whether
or not the customer fully paid back their loan and a host of other important
variables.

A lot of analyses has been performed and it has now become an important
benchmark data set for the classification problem. It has been made available
at https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data). It
has been used across many research works and it has a total hit visit of
228982 at the time of writing. Its analyses from various perspectives using R
software can be found at https://cran.r-project.org/doc/contrib/Sharma-
CreditScoring.pdf. Additional details can be sought at
https://onlinecourses.science.psu.edu/stat857/node/216. For an in-depth
analysis of the German credit data, refer to Tattar (2013). We will draw this
dataset from the RSADBE package and will do simple transformations in the
next section. A detailed description of the dataset is given here.

The GC dataset has 1,000 observations in 21 variables. The variable of interest
in this credit data is whether the loan has been a good loan, customer paid
back the loan amount completely, or a bad loan, and the information of this
status is put in the variable good_bad. Here, 700 out of the 1,000 observations
are good loans while the rest are bad loans. A host of important variable data
is also collected, which gives information on the type of the customer. The

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://cran.r-project.org/doc/contrib/Sharma-CreditScoring.pdf
https://onlinecourses.science.psu.edu/stat857/node/216

additional variables consist of both quantitative (numerical) as well as
qualitative (categorical) variables. The numerical variables are duration in
month (duration), credit amount (credit), installment as a fraction of
disposable income (installp), duration of stay at present residence
(resident), age in years (age), number of existing credits at the bank
(existcr), and number ofÂ the applicant's dependents (depends). The rest of
the other 21 variables are categorical variables.

The GC dataset has simplified numerical representation for the factor levels
of the categorical variables and as such most of them are identified as integer
variables, which is not appropriate. For instance, status of the current
checking account (checking) is simply numbered from 1-4 while they should
represent factor levels < 0 DM, 0 <= ... < 200 DM, >= 200 DM, and No Acc.
The next section fixes the required levels of the factor variables.

Simple data transformations

The German credit data available from the RSADBE 1.0 version has certain
limitations. The data file in the package is named GC. Many of the categorical
variables are stored as integer classes, which affects the overall analysis.
Also, some variables are not important here and after conversion from the
integer class to the factor class, re-labeling is needed. For instance, detailed
information about the variables can be obtained at
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data). In this
section, we'll use the data set and carry out the necessary transformation.

Getting ready

The reader will need to install the RSADBE package, which consists of the GC
dataset. As earlier, we first load all the pre-requisite libraries:

library (data.table)
library (dplyr)
library (RSADBE)
library (rpart)
library (randomForestSRC)
library (ROCR)
library (plyr)

How to do it...

The GC dataset is available in the RSADBE R package. As mentioned earlier,
datasets consist of many variables that are integer when those integers are
indicators of the factor level. For instance, as seen earlier, we need to have
the factor levels as < 0 DM, 0 <= ... < 200 DM, >= 200 DM, and No Acc,
instead of 1-4. This re-labeling needs to be done for the 1,000 observations,
which is achieved by using the functions as.factor and revalue:

1. Convert the checking variable to factor from its current integer class
and then apply the revalue (from the plyr package) function to get the

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

desired result:

data(GC)
GC2 <-GC
GC2$checking <-as.factor(GC2$checking)
GC2$checking <-revalue(GC2$checking,c("1"="< 0 DM","2"="0 <= ... < 200 DM"
"3"=">= 200 DM","4"="No Acc"))

2. The other integer objects are similarly converted to the desired factor
objects:

GC2$history <-as.factor(GC2$history)
GC2$history <-revalue(GC2$history,c("0"="All Paid","1"="Bank paid"
GC2$purpose <-as.factor(GC2$purpose)
GC2$purpose <-revalue(GC2$purpose,
c("0"="New Car","1"="Old Car","2"="Furniture",
"3"="Television","4"="Appliance","5"="Repairs",
"6"="Education","8"="Retraining","9"="Business",
"X"="Others"))
GC2$savings <-as.factor(GC2$savings)
GC2$savings <-revalue(GC2$savings,
c("1"="< 100 DM ","2"="100-500 DM",
"3"="500-1000 DM","4"=">1000 DM",
"5"="Unknown"))
GC2$employed <-as.factor(GC2$employed)
GC2$employed <-revalue(GC2$employed,
c("1"="Unemployed","2"="1 Year","3"="1-4 Years",
"4"="4-7 Years","5"=">7 Years"))
GC2$marital <-as.factor(GC2$marital)
GC2$marital <-revalue(GC2$marital,
c("1"="Female S","2"="Female M/D","3"="Male M/D",
"4"="Male S"))
GC2$coapp <-as.factor(GC2$coapp)
GC2$coapp <-revalue(GC2$coapp,
c("1"="None","2"="Co-app","3"="Guarantor"))
GC2$property <-as.factor(GC2$property)
GC2$property <-revalue(GC2$property,
c("1"="Real Estate","2"="Building society",
"3"="Others","4"="Unknown"))
GC2$other <-NULL# because "none" is dominating frequency
GC2$housing <-as.factor(GC2$housing)
GC2$housing <-revalue(GC2$housing,c("1"="Rent","2"="Own",
"3"="Free"))
GC2$job <-as.factor(GC2$job)
GC2$job <-revalue(GC2$job,c("1"="Unemployed","2"="Unskilled","3"="Skilled"
"4"="Highly Qualified"))

GC2$telephon <-as.factor(GC2$telephon)
GC2$telephon <-revalue(GC2$telephon,c("1"="None","2"="Registered"))
GC2$foreign <-as.factor(GC2$foreign)
GC2$foreign <-revalue(GC2$foreign,c("1"="No","2"="Yes"))

Note here that the other object is now removed from GC2.

How it works...

Data is not always in a ready-to-analyze format and may require fine tuning
in many cases. In this recipe, we used the technique of converting integer
object to a factor first and then re-labeled it as appropriate. A lot of data re-
structuring is easily possible and we'll use them as required.

There's more...

The data.table R package is also very useful. Data re-structuring can be
performed on the same object and as such there is no need to create another
object as we created GC2 here.

Visualizing categorical data

Visualization is an important aspect of any kind of exploratory analysis.
Suppose that we had no additional information on the customer's history and
we merely know that there were 700 good loans out of thousand sanctioned.
In this case, the prediction for the next customer to have a good loan payment
would have a probability 0.7. When the variable of interest is a numeric
variable, we can plot histograms, boxplots, and so on, to get a good
understanding of the problem. Here, the output good_bad is a factor variable
and such a plot won't make any sense. A simple understanding of the
distribution of the factor variable can be obtained using the bar plot where we
would have two bars with the length reflecting the proportionate frequency.
However, a bar plot is a one-dimensional plot in the sense that the x-axis
labels as good and bad won't add any value.

Scatter plots reveal relationships between two variables when both are
numeric variables. In our case, the main variable of interest good_bad is a
categorical/factor variable and plotting other variables against it won't bring
out the nature of the relationship, and hence we require different kinds of
visualizing techniques. Categorical variable visualization requires specialized
techniques and we use here the mosaic plot. For more details, please refer to
Friendly and Meyer (2015).

Getting ready

The R data frame GC2 as created in the previous recipe will be required here.

How to do it...

1. Bar plot and mosaic plots are obtained here and we begin with the
former first.

2. The barplot function gives the desired graph:

barplot(table(GC2$good_bad))

3. The visual output is given next:

The barplot is a simple depiction of the number of bad and good loans.
Additional information about the variables is always useful. Mosaic plots are
a stacked arrangement of barplots for multiple variables and it gives an
indication of the type of relationship between two categorical variables. Now,
we will first look at the proportion of the good/bad loans across different
categories of the variables housing, employed, and checking and follow it up

with the useful mosaic plot.

4. Using the functions table and prop.table, we obtain the percentage of
good/bad loans at each category variable:

table(GC2$good_bad,GC2$housing)

Rent Own Free
bad 70 186 44
good 109 527 64

prop.table(table(GC2$good_bad,GC2$housing),margin=2)

Rent Own Free
bad 0.3911 0.2609 0.4074
good 0.6089 0.7391 0.5926

The good/bad loans ratio is 700/300 and we now see that if the population is
divided into three parts according to whether the housing is Rent, Own, and
Free, the proportion of good in these parts is respectively 0.6089, 0.7391, and
0.5926. Thus, in the Own part, we see a higher proportion of good loans than
in the population. Of course, the other two parts see an increase in the
proportion of bad loans though improvisations can be made further in these
parts.

5. Similarly, the proportion table of employed and checking against the
loan variable are given next:

prop.table(table(GC2$good_bad,GC2$employed),margin=2)
Unemployed 1 Year 1-4 Years 4-7 Years >7 Years
bad 0.3710 0.4070 0.3068 0.2241 0.2530
good 0.6290 0.5930 0.6932 0.7759 0.7470

prop.table(table(GC2$good_bad,GC2$checking),margin=2)
< 0 DM 0 <= ... < 200 DM >= 200 DM No Acc
bad 0.4927 0.3903 0.2222 0.1168
good 0.5073 0.6097 0.7778 0.8832

It is clear from the preceding proportion tables that if an applicant has
employment of 4+ years, the possibility of loan repayment is higher than
other parts as identified by the employed variable. Similarly, if the checking
loan amount is either >= 200 DM or No Acc, the good payment proportion is

higher. If the reader wishes to visualize the numbers, mosaic plots help here.

6. The mosaic plot for two categorical variables can be obtained easily as
follows:

windows(height=15,width=10)
par(mfrow=c(3,1))
mosaicplot(~good_bad+housing,GC2)
mosaicplot(~good_bad+employed,GC2)
mosaicplot(~good_bad+checking,GC2)

7. The resulting mosaic plots is given as follows:

The proportions are well reflected on the mosaic plots and as such we have
an effective visualization method here.

How it works...

The R function table is very important for understanding categorical
variables and it does the frequency count by the factor levels. When the
prop.table is applied on an array/table, we get the column proportions with
the option margin=2.

Mosaic plots and bar plots provide visual insights in the analysis of

categorical data. With the initial impressions, we can now build statistical
techniques for statistical methods for identifying whether the customer will
turn out to be a good payer or a defaulter.

Discriminant analysis

Discriminant analysis is one of the earliest statistical methods that is used to
classify observations into distinct populations. As with many of the earlier
pioneering works in statistics, this technique too had been invented by the
great Sir R. A. Fisher. The theory of discriminant analysis is beyond the
scope of this book. We would simply be content with the use of the lda
function from the MASS package. Before applying the lda R technique to the
German credit data, we will first apply it on the iris dataset, which is also
popular thanks to Fisher. Following the application of the method to the iris
dataset, we will then apply it to the German credit data problem.

Getting ready

The requirement of the iris dataset and the MASS package is met by default R
software. The reader needs to have prepared the GC2 data frame as in the first
section.

How to do it...

We get an initial understanding of the iris data set with simple functions. In
this dataset, we have five variables Sepal.Length, Sepal.Width,
Petal.Length, Petal.Width, and Species. We have three types of iris
species setosa, versicolor, and virginica that need to be identified by
length and width of sepals and petals:

1. Load the iris object from the datasets package and get initial insight
using the str, summary, and pairs functions:

data(iris)
str(iris)

'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.30 Min. :2.00 Min. :1.00 Min. :0.1
1st Qu.:5.10 1st Qu.:2.80 1st Qu.:1.60 1st Qu.:0.3
Median :5.80 Median :3.00 Median :4.35 Median :1.3
Mean :5.84 Mean :3.06 Mean :3.76 Mean :1.2
3rd Qu.:6.40 3rd Qu.:3.30 3rd Qu.:5.10 3rd Qu.:1.8
Max. :7.90 Max. :4.40 Max. :6.90 Max. :2.5
Species
setosa :50
versicolor:50
virginica :50
##pairs(iris[,-5]) # Output suppressed

2. The preliminary summary gives an idea about the range of variables and
other essential summaries. It is desirable to have the summaries by each
type of species, the matrix of a scatterplot as identified by the pairs
function indicates the presence of at least two distinct species.

3. Now, apply the lda function from the MASS package on the iris dataset:

iris_lda <-lda(Species~.,iris)
iris_lda

Call:
lda(Species ~ ., data = iris)
##
Prior probabilities of groups:
setosa versicolor virginica
0.3333 0.3333 0.3333
##
Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
##

Coefficients of linear discriminants:
LD1 LD2
Sepal.Length 0.8294 0.0241
Sepal.Width 1.5345 2.1645
Petal.Length -2.2012 -0.9319
Petal.Width -2.8105 2.8392
##
Proportion of trace:
LD1 LD2
0.9912 0.0088

4. By running the line lda(Species~.,...), we are asking R to create an
lda object by the formula .~., where species is the group indicator that
needs to be identified by using all other variables from the dataset. Here,
we have two linear discriminant functions, which is a linear combination
of the four variables length and width of the sepal and petals. The first
linear discriminant function is

5. while the second one is

6. Importantly, the first discriminant itself explains 99% of the trace here
and seems good enough to identify the three groups. Now, we look at
how the scores of the discriminant look across the three species.

7. Predict the discriminant scores and use the histogram for the scores
across the three species:

iris_lda_values <-predict(iris_lda)
windows(height=20,width=10)
ldahist(iris_lda_values$x[,1],g=iris$Species)

8. The resulting diagram is as follows:

9. We can clearly see three distinct groups based on the discriminant
scores. Finally, we check for misclassification.

10. Using the table function, evaluate the performance of the technique:

table(predict(iris_lda)$class)

setosa versicolor virginica
50 49 51

table(iris$Species,predict(iris_lda)$class)

setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49

11. Note that using the function table on the predictions gives us the
frequency of each of the Species. However, it does not tell us which of
the original iris plants species is correctly predicted. Using the table with
the original and predicted class gives us the misclassification count.
Overall, a 3/150 = 0.02% error looks very impressive. Next, we apply
this technique to the German credit data.

12. The lda function is now applied on GC2:

GB_lda <-lda(good_bad~.,GC2)
GB_lda

Call:
lda(good_bad ~ ., data = GC2)
##
Prior probabilities of groups:
bad good
0.3 0.7
##

Coefficients of linear discriminants:
LD1
checking0 <= ... < 200 DM 3.808e-01
checking>= 200 DM 9.029e-01
checkingNo Acc 1.317e+00

telephonRegistered 2.159e-01
foreignYes 7.212e-01

table(predict(GB_lda)$class)

##
bad good
244 756

table(GC2$good_bad,predict(GB_lda)$class)

 ##
bad good
bad 158 142
good 86 614

We can see that nearly 50% of the bad loans are not identified here by the lda
technique. Hence, we need to improve on it and use different methods in the
rest of this chapter.

How it works...

The lda function from the MASS package is useful in carrying out linear
discriminant analysis.

See also

For details of the discriminant analysis technique, read McLachlan (1992).

Dividing the data and the ROC

If one uses the entire dataset to build a model, it is possible that we might
have over trained the model. A consequence is that the true performance of
the model goes unnoticed for the unknown cases. Essentially, we need to
build a good model for the credit problem and if the performance is unknown
for the new or unforeseen cases, skepticism is bound to creep into our minds.
A good practice then is to divide the available in three regions: (i) data for
building the model, (ii) data to validate the model, and (iii) data to test the
model. Thus, a set of models is built for a problem and then they are
evaluated over the validated part of the data, and the model that does best at
this stage is chosen for the test portion of the data. Data partitioning in three
regions can be easily performed and we can quickly show how it is done on
the German credit data.

Receiving operating curves, or ROC, is a very effective tool for accessing the
performance of a classification model. We borrow heavily from Chapter 7 of
Tattar (2013). In many classification models, if the predicted probability of
success is greater than 0.5, the observation is predicted as a successful
observation, and a failure otherwise. At least with the training and validate
data we know the true labels of the observations and hence a comparison of
the true labels with the predicted label makes sense. In an ideal case we
expect the predicted labels to match perfectly with the actual labels.
However, in reality, it is rarely the case, which means that there are some
observations that are predicted as success/failure when the true labels are
actually failure/success.

In other words, we make mistakes! It is possible to put these notes in the
form of a table widely known as the confusion matrix.

We consider the following metrics for comparison across models:

Now, when we have class imbalanced problems, it is easier to have very high
accuracy and precision, but that would be useless. For example, if there are
100 fraudulent transactions out of 1,00,000 observations, a classifier that
identifies all as good transactions will have more than 99.99% accuracy and
very high precision. However, such models won't identify even a single
fraudulent transaction. In such scenarios, the ROC method is very useful. The
ROC construction requires two metrics: true positive rate (tpr) and false
positive rate (fpr):

The ROC graphs are constructed by plotting the tpr against the fpr. The
diagonal line is about the performance of a random classifier in that it simply
says Yes or No without looking at any characteristic of an observation. Any
good classifier must sit, rather be displayed, above this line. The classifier,
albeit an unknown one, seems to be a much better classifier than the random
classifier. The ROC curve is useful in comparison to the competitive
classifiers in the sense that if one classifier is always above another, we select
the former. Another important metric associated with ROC is Area Under
Curve (AUC). The higher the AUC, the better the model is and it is a
number between 0 and 1.

Getting ready

We need the GC2 object in the current session as prepared in the earlier part of
the chapter.

How to do it...

Reproducibility is an important aspect at the initial stages of learning. We set
a seed for the random splitting of the data so that the results in the reading
and the results obtained from running them in an R environment are the
same.

1. Use set.seed for reproducibility:

set.seed(1234567)

2. Create three labels Train, Validate, and Test:

data_part_label <-c("Train","Validate","Test")

3. Now, sample from the vector data_part_label 1,000 times (with
replacement) with a probability 0.6, 0.2, and 0.2, and subset GC2
accordingly:

indv_label =sample(data_part_label,size=1000,replace=TRUE,prob
=c(0.6,0.2,0.2))
GC_Train <-GC2[indv_label=="Train",]
GC_Validate <-GC2[indv_label=="Validate",]
GC_Test <-GC2[indv_label=="Test",]

We would now roughly have 600 observations in GC_Train and 200 each in
GC_Validate and GC_Test.

4. Run the example for performance from the ROCR package:

example(performance)

In the plots seen on the screen, you would find the tpr plotted against tfr. A
perfect classifier would begin at 1 on the y-axis. For cross-model comparison,
we prefer a model whose ROC curve is uniformly higher than others. As an
example, we would like to generate the ROC curves for the Train and
Validate portions of the data set. Typically, the ROC curve for the Train

part would be better than the corresponding one for the Validate part.

Fitting the logistic regression model

The discriminant analysis technique works well only when the set of
independent variables/covariates follows multivariate normal distribution. At
the starting point, it does not show flexibility by ruling out categorical
variables. Many economic variables, such as salary, savings, and so on, are
known not to follow normal distribution and are also skewed in general.
Thus, the assumption of multivariate normal distribution is rather restrictive
and we need a general framework for the classification problem. A very
important class of model is provided by the logistic regression model. In fact,
it is known to have very nice theoretical properties. For example, it is
theoretically known that the logistic regression model provides as much
accuracy as the discriminant analysis in the case of the independent variable
following the multivariate normal distribution. The logistic regression model
is a member of the important exponential family, and it belongs to the class
of generalized linear models. Given the vector of independent observations:

Here, we have k independent variables while the random variable Y is a
binary random variable and the dependent variable for the logistic regression
model, refer to Chapter 7 of Tattar (2013) or Chapter 17 of Tattar, et al.
(2016) for more details and depth. For our purpose, we will simply use
functions from R, glm for the moment. The ROC packages ROCR and pROC are
useful for carrying out the tasks related to it. First, we'll fit the logistic
regression model and obtain the summary to find which variables are
significant.

Getting ready

Apart from the GC2 object in the working session, we would need the ROC

packages ROCR and pROC to complete the session.

How to do it...

We will now build a logistic regression model here:

1. Using the glm function, we build a logistic regression model for the
training dataset GC_Train and then apply the summary function to get
the details of the fitted model:

GC_Logistic <-glm(good_bad~.,data=GC_Train,family='binomial')
summary(GC_Logistic)

##
Call:
glm(formula = good_bad ~ ., family = "binomial", data = GC_Train)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.428 -0.725 0.374 0.715 2.222
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.42e+00 1.35e+00 1.05 0.2927
checking0 <= ... < 200 DM 1.24e-01 2.86e-01 0.44 0.6634
checking>= 200 DM 5.08e-01 4.81e-01 1.06 0.2913
checkingNo Acc 1.65e+00 3.06e-01 5.40 6.7e-08 ***
duration -2.95e-02 1.22e-02 -2.43 0.0153 *
historyBank paid -2.20e-01 6.78e-01 -0.33 0.7451
historyExisting paid 3.67e-01 5.29e-01 0.69 0.4880
historyDelayed 3.93e-01 5.83e-01 0.67 0.4999
historyDues Remain 1.47e+00 5.46e-01 2.69 0.0071 **
purposeOld Car 1.58e+00 5.07e-01 3.12 0.0018 **
purposeFurniture 8.66e-01 3.58e-01 2.42 0.0156 *
purposeTelevision 6.42e-01 3.20e-01 2.01 0.0448 *
purposeAppliance 6.17e-01 1.06e+00 0.58 0.5594
purposeRepairs -3.12e-01 7.32e-01 -0.43 0.6699
purposeEducation -5.74e-01 5.42e-01 -1.06 0.2896
purposeRetraining 1.50e+01 8.96e+02 0.02 0.9867
purposeBusiness 7.10e-01 4.36e-01 1.63 0.1032
purposeOthers 1.50e+01 8.37e+02 0.02 0.9857
amount -1.09e-04 5.74e-05 -1.90 0.0569 .
savings100-500 DM 3.22e-01 3.77e-01 0.85 0.3931
savings500-1000 DM 2.13e-01 4.69e-01 0.46 0.6491

savings>1000 DM 7.19e-01 6.49e-01 1.11 0.2685
savingsUnknown 1.24e+00 3.65e-01 3.39 0.0007 ***
employed1 Year 1.69e-01 5.69e-01 0.30 0.7662
employed1-4 Years 2.50e-01 5.53e-01 0.45 0.6518
employed4-7 Years 7.69e-01 6.01e-01 1.28 0.2005
employed>7 Years 2.62e-01 5.50e-01 0.48 0.6345
installp -3.34e-01 1.17e-01 -2.84 0.0045 **
maritalFemale M/D -2.30e-01 5.33e-01 -0.43 0.6661
maritalMale M/D 5.49e-01 5.29e-01 1.04 0.2987
maritalMale S 1.57e-01 6.18e-01 0.25 0.7992
coappCo-app 4.02e-01 6.05e-01 0.66 0.5069
coappGuarantor 1.34e+00 5.78e-01 2.33 0.0201 *
resident 4.00e-02 1.10e-01 0.36 0.7162
propertyBuilding society -4.23e-01 3.31e-01 -1.28 0.2019
propertyOthers -2.47e-01 3.10e-01 -0.80 0.4250
propertyUnknown -8.60e-01 5.66e-01 -1.52 0.1284
age 1.32e-02 1.14e-02 1.16 0.2472
housingOwn 1.28e-01 3.27e-01 0.39 0.6946
housingFree 4.41e-01 6.27e-01 0.70 0.4824
existcr -3.32e-01 2.57e-01 -1.29 0.1970
jobUnskilled -5.35e-01 8.72e-01 -0.61 0.5395
jobSkilled -4.76e-01 8.47e-01 -0.56 0.5739
jobHighly Qualified -6.57e-01 8.65e-01 -0.76 0.4476
depends -5.90e-01 3.25e-01 -1.81 0.0696 .
telephonRegistered 2.99e-01 2.61e-01 1.14 0.2526
foreignYes 1.47e+00 1.08e+00 1.36 0.1739

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 734.00 on 598 degrees of freedom
Residual deviance: 535.08 on 552 degrees of freedom
AIC: 629.1
##
Number of Fisher Scoring iterations: 14

2. As in the regular regression model, a factor variable with k factors is
converted into k-1 new variables. Here, the statistically insignificant
variables are employed, marital, resident, property, age, housing,
exist, job, telephone, and foreign. That is, 10 out of the 20 variables
specified are insignificant, while the others are significant. In the case of
factor variables, if any one of the levels is significant, the overall
variable is significant too. The underlying algorithm has converged after
14 iterations. We will next look at the accuracy of the model for the

training part.

3. Using the table function, we compute the accuracy of the model as
follows:

table(GC_Train$good_bad)

##
bad good
181 418

table(GC_Train$good_bad, ifelse(predict(GC_Logistic,type="response"

 ##
bad good
bad 96 85
good 46 372

4. In the training dataset, we have 181 bad loans, and the logistic
regression model correctly identifies 96 out of them, which is slightly
above 50% accuracy. Improvements in the accuracy is of course
desirable. However, we will instead check first how the model performs
on the data points that were not used to build the model and carry out the
ROC analysis.

5. For the training and validate partition, predict the class identification
by the fitted logistic regression model. Also, use the prediction and
performance function from the ROCR package to set up the ROC curves:

6. The resulting diagram is as follows:

7. It can be seen from the ROC curves that the performance of the logistic
regression declines in unseen cases or the validation part, as expected.
Next, we calculate the area under the curve metric for the model in both
the regions.

8. Calculate the area under curve using the roc function from the pROC
package:

9. Thus, the logistic regression model has higher AUC in the training part
than the validate part. Many ways of improving the logistic regression
model exists, for example, one might look in to model selection issues,
multi-collinearity problems, and so on. A detailed digression in logistic
regression model is not necessary here though. Here, the AUC
difference is 0.836 - 0.72 = 0.116 and it seems very high. The ideal is to
find those models where this difference is as small as possible, which
would then imply that the model has learnt the features/patterns and it is
able to generalize quite well too. In the next section, we will quickly see
what the decision rules and in the following section we will see how the
rules are generated.

How it works...

The glm function is very versatile and it can be used to fit models in the class

of generalized linear models. Here, we used it fit the logistic regression
model with the option family='binomial'. The summary function gives the
details of the fitted model. The table function is used to access the accuracy
of the fitted model over the training and validate portions of the data. The
predict function returns the probability P(Y=1) given the values of the
independent variables. The prediction and performance functions from the
ROCR package help in setting up the ROC curves, while the roc function from
the pROC package is used to calculate the AUC.

See also

For more details try ?glm, library(help=ROCR) and library(help=pROC).

Decision trees and rules

The logistic regression model is a powerful technique. For a practitioner, it
possesses some difficulties in terms of the p-values, the threshold values of
prediction, and so on. The decision rules provide a simple framework
wherein the practitioner shouldÂ simply look up at certain variables and the
values to arrive at a decision. For instance, if a customer calls up a bank help
desk and tries to find out whether they are eligible for a loan, the call center
employee asks for some details such as age, income, gender, existing loans,
and so on, and tells them whether they are eligible for the loan. Generally,
such a decision is arrived at using sets of decision rules. Similarly, if an
emergency patient is on the way to hospital with suspicion of heart related
problems, a simple set of rules might help in deciding whether it is a gastric
problem or an attack and in the latter case, the hospital can begin the
necessary preparations as every single minute would prove crucial in the
diagnostics. The important question is how does one arrive at such a set of
decision rules.

Decision rules are easily derived from decision trees and we'll look at rpart
example. We will first build a classification tree and then visualize the
decision tree. The decision rules from the tree are extracted and we will then
look at the percentile splits at each of the terminal nodes using the table
function.

Getting ready

We will need the kyphosis dataset from the rpart package.

How to do it...

1. Using the kyphosis data, we will learn about decision tress and rules:
2. Load the kyphosis dataset from the rpart package:

library(rpart)
data(kyphosis)

3. Build the classification tree using the rpart function and visualize the
decision tree:

kyphosis_rpart <-rpart(Kyphosis~.,kyphosis)
plot(kyphosis_rpart,uniform=TRUE)
text(kyphosis_rpart)

4. The resulting decision tree is as follows:

5. The rules of the tree can be extracted by using the asRules function
from the rattle package:

asRules(kyphosis_rpart)

 ##
Rule number: 3 [Kyphosis=present cover=19 (23%) prob=0.58]
Start< 8.5
##
Rule number: 23 [Kyphosis=present cover=7 (9%) prob=0.57]
Start>=8.5
Start< 14.5
Age>=55
Age< 111
##

Rule number: 22 [Kyphosis=absent cover=14 (17%) prob=0.14]
Start>=8.5
Start< 14.5
Age>=55
Age>=111
##
Rule number: 10 [Kyphosis=absent cover=12 (15%) prob=0.00]
Start>=8.5
Start< 14.5
Age< 55
##
Rule number: 4 [Kyphosis=absent cover=29 (36%) prob=0.00]
Start>=8.5
Start>=14.5

6. We can easily get a count of the number of cases per terminal node as
shown next.

7. Use the where variable of the rpart function to find which terminal
node a case is assigned:

kyphosis$where <-kyphosis_rpart$where
table(kyphosis$Kyphosis,kyphosis$where)

##
3 5 7 8 9
absent 29 12 12 3 8
present 0 0 2 4 11

8. Now, these numbers can also be obtained through the simple table
function. First, we convert the data.frame object to a data.table
object.

9. Convert the data.frame kyphosis into a data.table object:

K2 <-data.table(kyphosis)

10. Since the preceding tree diagram suggests that if the start value is greater
than 12.5, Kyphosis would be absent in the individual, we check it.

11. Using the data.table structure, find the proportional count by the
Start variable:

K2[,prop.table(table(Kyphosis))]

Kyphosis
absent present

0.7901 0.2099

12. Similarly, verify the proportional count at each terminal node:

K2[Start>=12.5,prop.table(table(Kyphosis))]

Kyphosis
absent present
0.95652 0.04348

K2[Start <12.5&Age <=35,prop.table(table(Kyphosis))]

Kyphosis
absent present
0.9 0.1

K2[Start <12.5&Age >35&Number <4.5,prop.table(table(Kyphosis))]

Kyphosis
absent present
0.5833 0.4167

K2[Start <12.5&Age >35&Number >=4.5,prop.table(table(Kyphosis))]

Kyphosis
absent present
0.3077 0.6923

Thus, a decision tree creates partitions of the data set where each terminal
node has as high cases of a factor variable as possible. In general, a decision
tree looks at distinct values of each of the variables and accordingly partitions
the data into distinct region. Then, it accesses how good each of the partitions
is and selects that split which leads to maximum gain in accuracy at each of
the terminal nodes. Thus, the data is recursively split in multiple regions and
the process is concluded until each of the terminal node consists of as many
pure nodes as possible.

Next, we will build decision trees for the German credit data.

How it works...

The rpart package helps in constructing classification, regression, and

survival trees. The decision trees can be easily visualized using the plot
function. We have extracted the rules of the decision tree using the asRules
function from the rattle package.

See also

Decision trees can be built in R using multiple packages, for example
partykit, tree, and so on.

Decision tree for german data

We have fit a logistic regression model for the German data. Now, we will
create a decision tree for it.

Getting ready

The GC2 object along with the partitioned data will be required here. Also, the
fitted logistic regression model is needed.

How to do it ...

We will create the decision tree using the rpart package and its
functionalities:

1. Create the decision tree and plot it as follows:

GC_CT <-rpart(good_bad~.,data=GC_Train)
windows(height=20,width=20)
plot(GC_CT,uniform =TRUE);text(GC_CT)

2. The decision tree plot is given as follows:

3. The properties of the fitted tree need to be evaluated.
4. Check the complexity parameter and important variables of the fitted

tree:

table(GC_Train$good_bad,predict(GC_CT,type="class"))

##
bad good
bad 107 74
good 32 386

GC_CT$cptable

CP nsplit rel error xerror xstd
1 0.06262 0 1.0000 1.0000 0.06209
2 0.02486 3 0.8122 0.9503 0.06118
3 0.02210 6 0.7348 1.0055 0.06219
4 0.01842 8 0.6906 0.9724 0.06159
5 0.01657 12 0.6022 0.9779 0.06170
6 0.01000 13 0.5856 0.9724 0.06159

GC_CT$variable.importance

checking duration amount history savings purpose coapp property
29.4516 15.0985 12.8465 11.2774 10.8025 9.7595 7.2114 6.7423
employed housing age installp existcr job marital resident
6.7003 6.1063 3.6083 2.8071 1.6281 1.4417 1.3372 0.9983

5. Thus, we see that the variables in order of importance are checking,
duration, amount, history, and so forth. Out of the 181 bad loans in the
training dataset, we have identified 107 of them as compared with only
96 using the logistic regression model. Whether this is indeed an
improvement will be evaluated later. We will now complete the ROC
analysis.

6. As with the logistic regression model, we first fit the ROC curves and
then compare it with the earlier logistic regression solutions:

 GC_CT_Train_Prob <-predict(GC_CT,newdata=GC_Train[,-21], type="prob"
GC_CT_Validate_Prob <-predict(GC_CT,newdata=GC_Validate[,-21], type=
GB_CT_Train_roc <-roc(GC_Train$good_bad,GC_CT_Train_Prob)
GB_CT_Validate_roc <-roc(GC_Validate$good_bad,GC_CT_Validate_Prob)

##
DeLong's test for two correlated ROC curves
##
data: GB_Logistic_Train_roc and GB_CT_Train_roc
Z = 0.92, p-value = 0.4
alternative hypothesis: true difference in AUC is not equal to 0
sample estimates:
AUC of roc1 AUC of roc2
0.8358 0.8206

roc.test(GB_Logistic_Validate_roc,GB_CT_Validate_roc)

##
DeLong's test for two correlated ROC curves
##
data: GB_Logistic_Validate_roc and GB_CT_Validate_roc
Z = -0.2, p-value = 0.8
alternative hypothesis: true difference in AUC is not equal to 0
sample estimates:
AUC of roc1 AUC of roc2
0.7198 0.7301

The higher gain in the accuracy for the decision tree is not statistically
significant. Thus, the ROC curves are not much different for the logistic
regression model and the decision tree. However, if we were to ignore the
results from the ROC tests, we might as well say that the decision tree gives
higher accuracy.

How it works...

The rpart function continues to be useful. Also, we applied roc.test for the
first time in the book.

A lot of advancement has taken in the context of decision trees and we
restrict ourselves with the simple decision tree only.

	Chapter 1. Preparing Your Data Science EnvironmentA traditional cookbook contains culinary recipes of interest to the authors, and helps readers expand their repertoire of foods to prepare. Many might believe that the end product of a recipe is the dish itself and one can read this book, in much the same way. Every chapter guides the reader through the application of the stages of the data science pipeline to different datasets with various goals. Also, just as in cooking, the final product can simply be the analysis applied to a particular set.We hope that you will take a broader view, however. Data scientists learn by doing, ensuring that every iteration and hypothesis improves the practioner's knowledge base. By taking multiple datasets through the data science pipeline using two different programming languages (R and Python), we hope that you will start to abstract out the analysis patterns, see the bigger picture, and achieve a deeper understanding of this rather ambiguous field o
	Chapter 1. Preparing Your Data Science Environment
	Chapter 2. Driving Visual Analysis with Automobile Data with RIn this chapter, we will cover the following:Acquiring automobile fuel efficiency dataPreparing R for your first projectImporting automobile fuel efficiency data into RExploring and describing fuel efficiency dataAnalyzing automobile fuel efficiency over timeInvestigating the makes and models of automobiles
	Chapter 2. Driving Visual Analysis with Automobile Data with R
	Chapter 3. Creating Application-Oriented Analyses Using Tax Data and PythonIn this chapter, we will cover:Preparing for the analysis of top incomesImporting and exploring the world's top incomes datasetAnalyzing and visualizing the top income data of the USFurthering the analysis of the top income groups of the USReporting with Jinja2Repeating the analysis in R
	Chapter 3. Creating Application-Oriented Analyses Using Tax Data and Python
	Chapter 4. Modeling Stock Market DataIn this chapter, we will cover:Acquiring stock market dataSummarizing the dataCleaning and exploring the dataGenerating relative valuationsScreening stocks and analyzing historical prices
	Chapter 4. Modeling Stock Market Data
	Chapter 5. Visually Exploring Employment DataIn this chapter, we will cover:Preparing for analysisImporting employment data into RExploring the employment dataObtaining and merging additional dataAdding geographical informationExtracting state- and county-level wage and employment informationVisualizing geographical distributions of payExploring where the jobs are, by industryAnimating maps for a geospatial time seriesBenchmarking performance for some common tasks
	Chapter 5. Visually Exploring Employment Data
	Chapter 6. Driving Visual Analyses with Automobile DataIn this chapter, we will cover:Getting started with JupyterExploring Jupyter NotebookPreparing to analyze automobile fuel efficienciesExploring and describing fuel efficiency data with PythonAnalyzing automobile fuel efficiency over time with PythonInvestigating the makes and models of automobiles with Python
	Chapter 6. Driving Visual Analyses with Automobile Data
	Chapter 7. Working with Social GraphsIn this chapter, we will cover:Preparing to work with social networks in PythonImporting networksExploring subgraphs within a heroic networkFinding strong tiesFinding key playersExploring characteristics of entire networksClustering and community detection in social networksVisualizing graphsSocial networks in R
	Chapter 7. Working with Social Graphs
	Chapter 8. Recommending Movies at Scale (Python)In this chapter, we will cover the following recipes:Modeling preference expressionsUnderstanding the dataIngesting the movie review dataFinding the highest-scoring moviesImproving the movie-rating systemMeasuring the distance between users in the preference spaceComputing the correlation between usersFinding the best critic for a userPredicting movie ratings for usersCollaboratively filtering item by itemBuilding a non-negative matrix factorization modelLoading the entire dataset into the memoryDumping the SVD-based model to the diskTraining the SVD-based modelTesting the SVD-based model
	Chapter 8. Recommending Movies at Scale (Python)
	Chapter 9. Harvesting and Geolocating Twitter Data (Python)In this chapter, we will cover the following recipes:Creating a Twitter applicationUnderstanding the Twitter API v1.1Determining your Twitter followers and friendsPulling Twitter user profilesMaking requests without running afoul of Twitter's rate limitsStoring JSON data to the diskSetting up MongoDB for storing Twitter dataStoring user profiles in MongoDB using PyMongoExploring the geographic information available in profilesPlotting geospatial data in Python
	Chapter 9. Harvesting and Geolocating Twitter Data (Python)
	Chapter 10. Forecasting New Zealand Overseas VisitorsIn this chapter, we will cover the following recipes:Creating time series objectsVisualizing time series dataExploratory methods and insightsTrend and season analysisARIMA modelingAccuracy assessmentFitting Seasonal ARIMA modeling
	Chapter 10. Forecasting New Zealand Overseas Visitors
	Chapter 11. German Credit Data AnalysisIn this chapter, we will cover the following recipes:Transforming the dataVisualizing categorical dataDiscriminant analysis for identifying defaultsFitting logistic regression modelA decision tree for the German DataFiner aspects of decision trees
	Chapter 11. German Credit Data Analysis

